Global Boundedness in a Logarithmic Keller-Segel System

被引:0
作者
Liu, Jinyang [1 ,2 ]
Tian, Boping [1 ]
Wang, Deqi [2 ]
Tang, Jiaxin [2 ]
Wu, Yujin [3 ]
机构
[1] Harbin Inst Technol, Sch Math, Harbin 150001, Peoples R China
[2] Chengdu Univ Informat Technol, Sch Stat, Chengdu 610103, Peoples R China
[3] Zhejiang Sci Tech Univ, Sch Econ & Management, Hangzhou 310018, Peoples R China
关键词
chemotaxis model; energy functional; integral inequality; global uniform boundedness; PARABOLIC CHEMOTAXIS SYSTEM; WELL-POSEDNESS; BLOW-UP; SENSITIVITY;
D O I
10.3390/math11122743
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we propose a user-friendly integral inequality to study the coupled parabolic chemotaxis system with singular sensitivity under the Neumann boundary condition. Under a low diffusion rate, the classical solution of this system is uniformly bounded. Our proof replies on the construction of the energy functional containing ?(O)|?|(4)/?(2) with v>0. It is noteworthy that the inequality used in the paper may be applied to study other chemotaxis systems.
引用
收藏
页数:11
相关论文
共 50 条
[21]   A generalized solution concept for the Keller-Segel system with logarithmic sensitivity: global solvability for large nonradial data [J].
Lankeit, Johannes ;
Winkler, Michael .
NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2017, 24 (04)
[22]   Generalized solution and eventual smoothness in a logarithmic Keller-Segel system for criminal activities [J].
Li, Bin ;
Xie, Li .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2023, 33 (06) :1281-1330
[23]   A Keller-Segel type system in higher dimensions [J].
Ulusoy, Suleyman .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2017, 34 (04) :961-971
[24]   On the minimal Keller-Segel system with logistic growth [J].
Myint, Aung Zaw ;
Wang, Jianping ;
Wang, Mingxin .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2020, 55
[25]   BOUNDEDNESS AND HOMOGENEOUS ASYMPTOTICS FOR A FRACTIONAL LOGISTIC KELLER-SEGEL EQUATIONS [J].
Burczak, Jan ;
Granero-Belinchon, Rafael .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2020, 13 (02) :139-164
[26]   Global bounded solutions to a Keller-Segel system with singular sensitivity [J].
Zhang, Qingshan .
APPLIED MATHEMATICS LETTERS, 2020, 107
[27]   Convergence rate of solutions towards spiky steady state for the Keller-Segel system with logarithmic sensitivity [J].
Song, Xu ;
Li, Jingyu .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2023, 232
[28]   Boundedness for a Fully Parabolic Keller-Segel Model with Sublinear Segregation and Superlinear Aggregation [J].
Frassu, Silvia ;
Viglialoro, Giuseppe .
ACTA APPLICANDAE MATHEMATICAE, 2021, 171 (01)
[29]   GLOBAL EXISTENCE AND LARGE TIME BEHAVIOR OF A 2D KELLER-SEGEL SYSTEM IN LOGARITHMIC LEBESGUE SPACES [J].
Deng, Chao ;
Li, Tong .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2019, 24 (01) :183-195
[30]   BOUNDEDNESS IN A QUASILINEAR FULLY PARABOLIC KELLER-SEGEL SYSTEM VIA MAXIMAL SOBOLEV REGULARITY [J].
Ishida, Sachiko ;
Yokota, Tomomi .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2020, 13 (02) :211-232