Selective halogenation of central and end-units of nonfullerene acceptors enables enhanced molecular packing and photovoltaic performance

被引:42
作者
Xie, Meiling [1 ,2 ]
Shi, Yanan [1 ,2 ]
Zhu, Lingyun [1 ]
Zhang, Jianqi [1 ]
Cheng, Qian [1 ,2 ]
Zhang, Hao [1 ,2 ]
Yan, Yangjun [1 ]
Zhu, Mingquan [1 ,2 ]
Zhou, Huiqiong [1 ,2 ]
Lu, Kun [1 ,2 ]
Wei, Zhixiang [1 ,2 ]
机构
[1] Natl Ctr Nanosci & Technol, CAS Ctr Excellence Nanosci, CAS Key Lab Nanosyst & Hierarch Fabricat, Beijing 100190, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
基金
中国国家自然科学基金;
关键词
D O I
10.1039/d3ee01333b
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Halogenation of nonfullerene acceptors (NFAs) is a general and effective strategy to improve the power conversion efficiencies (PCEs) of organic solar cells (OSCs). Although end-group halogenation has achieved great success, central-unit halogenation has not been systematically studied due to the lack of substitution points in traditional Y-series acceptors. Herein, based on recently developed quinoxaline (Qx)-series acceptors, a series of NFAs, Qx-o-4F, Qx-m-4F, Qx-p-4F, and Qx-p-4Cl, were developed by changing the substitution positions of fluorine atoms on the central unit and the type of terminal halogen atoms. These isomeric fluorinated central units and different end groups result in altered local dipole moments, thus affecting molecular stacking modes and photoelectronic properties of NFAs. Qx-p-4Cl with the para-fluorinated central unit and chlorinated end groups exhibits red-shifted absorption, decreased energy loss, ordered molecular packing, and a favorable blend morphology, which are conducive to charge generation and transport. As a result, OSCs based on PM6:Qx-p-4Cl exhibit a high PCE of 18.06%, which could be further improved to 18.78% by interface optimization. This work underlines the importance of selective halogenation of central units and end groups in manipulating molecular packing and boosting the photovoltaic performance of OSCs.
引用
收藏
页码:3543 / 3551
页数:9
相关论文
共 45 条
[1]   Material Strategies to Accelerate OPV Technology Toward a GW Technology [J].
Brabec, Christoph J. ;
Distler, Andreas ;
Du, Xiaoyan ;
Egelhaaf, Hans-Joachim ;
Hauch, Jens ;
Heumueller, Thomas ;
Li, Ning .
ADVANCED ENERGY MATERIALS, 2020, 10 (43)
[2]   PBDB-T-Based Binary-OSCs Achieving over 15.83% Efficiency via End-Group Functionalization and Alkyl-Chain Engineering of Quinoxaline-Containing Non-Fullerene Acceptors [J].
Busireddy, Manohar Reddy ;
Chen, Tsung-Wei ;
Huang, Sheng-Ci ;
Su, Yi-Jia ;
Wang, Yu-Min ;
Chuang, Wei-Tsung ;
Chen, Jiun-Tai ;
Hsu, Chain-Shu .
ACS APPLIED MATERIALS & INTERFACES, 2022, 14 (36) :41264-41274
[3]   Computational chemistry-assisted design of a non-fullerene acceptor enables 17.4% efficiency in high-boiling-point solvent processed binary organic solar cells [J].
Cai, Guilong ;
Chen, Zeng ;
Li, Tengfei ;
Xia, Xinxin ;
Fu, Yuang ;
Xu, Luhang ;
Chi, Weijie ;
Zhang, Jianqi ;
Zhu, Haiming ;
Zhan, Xiaowei ;
Lu, Xinhui .
JOURNAL OF MATERIALS CHEMISTRY A, 2022, 10 (39) :21061-21071
[4]   Central Unit Fluorination of Non-Fullerene Acceptors Enables Highly Efficient Organic Solar Cells with Over 18 % Efficiency [J].
Chen, Hongbin ;
Liang, Huazhe ;
Guo, Ziqi ;
Zhu, Yu ;
Zhang, Zhe ;
Li, Zhixiang ;
Cao, Xiangjian ;
Wang, Haohui ;
Feng, Wanying ;
Zou, Yalu ;
Meng, Lingxian ;
Xu, Xiaoyun ;
Bin Kan ;
Li, Chenxi ;
Yao, Zhaoyang ;
Wan, Xiangjian ;
Ma, Zaifei ;
Chen, Yongsheng .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2022, 61 (41)
[5]   Lowing the energy loss of organic solar cells by molecular packing engineering via multiple molecular conjugation extension [J].
Chen, Hongbin ;
Zou, Yalu ;
Liang, Huazhe ;
He, Tengfei ;
Xu, Xiaoyun ;
Zhang, Yunxin ;
Ma, Zaifei ;
Wang, Jing ;
Zhang, Mingtao ;
Li, Quanwen ;
Li, Chenxi ;
Long, Guankui ;
Wan, Xiangjian ;
Yao, Zhaoyang ;
Chen, Yongsheng .
SCIENCE CHINA-CHEMISTRY, 2022, 65 (07) :1362-1373
[6]   Realizing Ultrahigh Mechanical Flexibility and >15% Efficiency of Flexible Organic Solar Cells via a "Welding" Flexible Transparent Electrode [J].
Chen, Xiaobin ;
Xu, Guiying ;
Zeng, Guang ;
Gu, Hongwei ;
Chen, Haiyang ;
Xu, Haitao ;
Yao, Huifeng ;
Li, Yaowen ;
Hou, Jianhui ;
Li, Yongfang .
ADVANCED MATERIALS, 2020, 32 (14)
[7]   Next-generation organic photovoltaics based on non-fullerene acceptors [J].
Cheng, Pei ;
Li, Gang ;
Zhan, Xiaowei ;
Yang, Yang .
NATURE PHOTONICS, 2018, 12 (03) :131-142
[8]   Recombination in polymer-fullerene bulk heterojunction solar cells [J].
Cowan, Sarah R. ;
Roy, Anshuman ;
Heeger, Alan J. .
PHYSICAL REVIEW B, 2010, 82 (24)
[9]   Single-Junction Organic Photovoltaic Cells with Approaching 18% Efficiency [J].
Cui, Yong ;
Yao, Huifeng ;
Zhang, Jianqi ;
Xian, Kaihu ;
Zhang, Tao ;
Hong, Ling ;
Wang, Yuming ;
Xu, Ye ;
Ma, Kangqiao ;
An, Cunbin ;
He, Chang ;
Wei, Zhixiang ;
Gao, Feng ;
Hou, Jianhui .
ADVANCED MATERIALS, 2020, 32 (19)
[10]   Balancing the Selective Absorption and Photon-to-Electron Conversion for Semitransparent Organic Photovoltaics with 5.0% Light-Utilization Efficiency [J].
Guan, Shitao ;
Li, Yaokai ;
Yan, Kangrong ;
Fu, Weifei ;
Zuo, Lijian ;
Chen, Hongzheng .
ADVANCED MATERIALS, 2022, 34 (41)