Score function scaling for QAR plus Beta-t-EGARCH: an empirical application to the S&P 500

被引:2
作者
Ayala, Astrid Loretta [1 ]
Blazsek, Szabolcs [1 ,2 ]
Licht, Adrian [1 ]
机构
[1] Univ Francisco Marroquin, Sch Business, Guatemala City, Guatemala
[2] Univ Francisco Marroquin, Sch Business, Calle Manuel F Ayau, Guatemala City 01010, Guatemala
关键词
Dynamic conditional score (DCS); generalized autoregressive score (GAS); scaling parameters of the conditional score function; quasi-autoregressive (QAR) model; Beta-t-EGARCH (exponential generalized autoregressive conditional heteroscedasticity) model; TIME-SERIES; MODELS;
D O I
10.1080/00036846.2023.2208335
中图分类号
F [经济];
学科分类号
02 ;
摘要
In the literature on score-driven models, alternative choices of the scaling parameters of the conditional score terms are used, but the optimal choice of those parameters is an open question. Although there are score-driven models for which the choice of the scaling parameters is irrelevant, there are important score-driven models for which score-driven scale filters appear in the information matrix, and the choice of the scaling parameters is relevant. We focus on the quasi-autoregressive (QAR) plus Beta-t-EGARCH (exponential generalized autoregressive conditional heteroscedasticity) model, by using data on the Vanguard Standard & Poor's 500 (S&P 500) exchange-traded fund (VOO) and all available S&P 500 stocks for the period of 2013-2023. For QAR plus Beta-t-EGARCH, each updating term is the product of a scaling parameter and a conditional score, and we use specific alternative scaling parameters from the literature. For different scaling parameters in the scale filter (volatility), alternative location and scale filters coincide. For different scaling parameters in the location filter (expected return), alternative location and scale filters differ significantly. For the statistical and volatility forecasting performances of VOO and most of the S&P 500 stocks, the best-performing scaling parameter for the score-driven location is the conditional inverse information matrix.
引用
收藏
页码:3684 / 3697
页数:14
相关论文
共 20 条
[1]   Anticipating extreme losses using score-driven shape filters [J].
Ayala, Astrid ;
Blazsek, Szabolcs ;
Escribano, Alvaro .
STUDIES IN NONLINEAR DYNAMICS AND ECONOMETRICS, 2023, 27 (04) :449-484
[2]   Information-theoretic optimality of observation-driven time series models for continuous responses [J].
Blasques, F. ;
Koopman, S. J. ;
Lucas, A. .
BIOMETRIKA, 2015, 102 (02) :325-343
[3]   Maximum likelihood estimation for score-driven models [J].
Blasques, Francisco ;
van Brummelen, Janneke ;
Koopman, Siem Jan ;
Lucas, Andre .
JOURNAL OF ECONOMETRICS, 2022, 227 (02) :325-346
[4]   Score-driven location plus scale models: asymptotic theory and an application to forecasting Dow Jones volatility [J].
Blazsek, Szabolcs ;
Escribano, Alvaro ;
Licht, Adrian .
STUDIES IN NONLINEAR DYNAMICS AND ECONOMETRICS, 2024, 28 (01) :61-82
[5]   Co-integration with score-driven models: an application to US real GDP growth, US inflation rate, and effective federal funds rate [J].
Blazsek, Szabolcs ;
Escribano, Alvaro ;
Licht, Adrian .
MACROECONOMIC DYNAMICS, 2023, 27 (01) :203-223
[6]   QARMA-Beta-t-EGARCH versus ARMA-GARCH: an application to S&P 500 [J].
Blazsek, Szabolcs ;
Mendoza, Vicente .
APPLIED ECONOMICS, 2016, 48 (12) :1119-1129
[7]   GENERALIZED AUTOREGRESSIVE CONDITIONAL HETEROSKEDASTICITY [J].
BOLLERSLEV, T .
JOURNAL OF ECONOMETRICS, 1986, 31 (03) :307-327
[8]  
Box G.E.P., 1970, TIME SERIES ANAL FOR, DOI [10.1080/01621459.1970.10481180, DOI 10.1080/01621459.1970.10481180]
[9]  
COX DR, 1981, SCAND J STAT, V8, P93
[10]  
Creal D., 2008, Tinbergen Institute Discussion Paper 08-108/4