Optimal Predictors of General Small Area Parameters Under an Informative Sample Design Using Parametric Sample Distribution Models

被引:3
作者
Cho, Yanghyeon [1 ,2 ]
Guadarrama-Sanz, Maria [3 ]
Molina, Isabel [4 ]
Eideh, Abdulhakeem [5 ]
Berg, Emily [6 ]
机构
[1] Columbia Univ, Gertrude H Sergievsky Ctr, Dept Biostat, New York, NY 10027 USA
[2] Columbia Univ, Ctr Stat Genet, New York, NY 10027 USA
[3] Luxembourg Inst Socio Econ Res, Esch Sur Alzette, Luxembourg
[4] Univ Complutense Madrid, Inst Interdisciplinary Math IMI, Dept Stat & Operat Res, Madrid, Spain
[5] Al Quds Univ, Coll Sci & Technol, Dept Math, Abu Dees Campus, East Jerusalem, Palestine
[6] Iowa State Univ, Dept Stat, Ames, IA USA
关键词
Empirical best predictor; Informative sampling; Nonlinear parameters; Parametric bootstrap; Small area estimation; MIXED-MODEL; ERROR;
D O I
10.1093/jssam/smae007
中图分类号
O1 [数学]; C [社会科学总论];
学科分类号
03 ; 0303 ; 0701 ; 070101 ;
摘要
Two challenges in small area estimation occur when (i) the sample selection mechanism depends on the outcome variable and (ii) the parameter of interest is a nonlinear function of the response variable in the assumed model. If, given the values of the model covariates, the sample selection mechanism depends on the model response variable, the design is said to be informative for the model. Pfeffermann and Sverchkov (2007) develop a small area estimation procedure for informative sampling, focusing on the prediction of small area means. Molina and Rao (2010) develop a small area estimation procedure for general parameters that are nonlinear functions of the model response variable. The method of Molina and Rao assumes noninformative sampling. We combine these two approaches to develop a procedure for the estimation of general parameters in small areas under informative sampling. We introduce a parametric bootstrap MSE estimator that is appropriate for an informative sample design. We evaluate the validity of the proposed procedures through extensive simulation studies and illustrate the procedures utilizing Mexico's income data.
引用
收藏
页码:1430 / 1463
页数:34
相关论文
共 26 条
[1]   AN ERROR-COMPONENTS MODEL FOR PREDICTION OF COUNTY CROP AREAS USING SURVEY AND SATELLITE DATA [J].
BATTESE, GE ;
HARTER, RM ;
FULLER, WA .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1988, 83 (401) :28-36
[2]   AN APPROXIMATE BEST PREDICTION APPROACH TO SMALL AREA ESTIMATION FOR SHEET AND RILL EROSION UNDER INFORMATIVE SAMPLING [J].
Berg, Emily ;
Kim, Jae-Kwang .
ANNALS OF APPLIED STATISTICS, 2021, 15 (01) :102-125
[3]   Multivariate mixture model for small area estimation of poverty indicators [J].
Bikauskaite, Agne ;
Molina, Isabel ;
Morales, Domingo .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES A-STATISTICS IN SOCIETY, 2022, 185 :S724-S755
[4]   Small area estimation of complex parameters under unit-level models with skew-normal errors [J].
Diallo, Mamadou S. ;
Rao, J. N. K. .
SCANDINAVIAN JOURNAL OF STATISTICS, 2018, 45 (04) :1092-1116
[5]  
Eideh A. H., 2002, ESTIMATION LON UNPUB
[6]   Two-stage informative cluster sampling-estimation and prediction with applications for small-area models [J].
Eideh, Abdulhakeem ;
Nathan, Gad .
JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2009, 139 (09) :3088-3101
[7]   ESTIMATES OF INCOME FOR SMALL PLACES - APPLICATION OF JAMES-STEIN PROCEDURES TO CENSUS-DATA [J].
FAY, RE ;
HERRIOT, RA .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1979, 74 (366) :269-277
[8]   A CLASS OF DECOMPOSABLE POVERTY MEASURES [J].
FOSTER, J ;
GREER, J ;
THORBECKE, E .
ECONOMETRICA, 1984, 52 (03) :761-766
[9]   Bootstrap mean squared error of a small-area EBLUP [J].
Gonzalez-Manteiga, W. ;
Lombardia, M. J. ;
Molina, I. ;
Morales, D. ;
Santamaria, L. .
JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2008, 78 (05) :443-462
[10]   A generalized mixed model for skewed distributions applied to small area estimation [J].
Graf, Monique ;
Miguel Marin, J. ;
Molina, Isabel .
TEST, 2019, 28 (02) :565-597