Riemannian Interior Point Methods for Constrained Optimization on Manifolds

被引:3
作者
Lai, Zhijian [1 ]
Yoshise, Akiko [1 ]
机构
[1] Univ Tsukuba, Tsukuba, Ibaraki 3058573, Japan
关键词
Riemannian manifolds; Riemannian optimization; Nonlinear optimization; Interior point method; GLOBAL CONVERGENCE; NEWTONS METHOD; FORMULATION;
D O I
10.1007/s10957-024-02403-8
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We extend the classical primal-dual interior point method from the Euclidean setting to the Riemannian one. Our method, named the Riemannian interior point method, is for solving Riemannian constrained optimization problems. We establish its local superlinear and quadratic convergence under the standard assumptions. Moreover, we show its global convergence when it is combined with a classical line search. Our method is a generalization of the classical framework of primal-dual interior point methods for nonlinear nonconvex programming. Numerical experiments show the stability and efficiency of our method.
引用
收藏
页码:433 / 469
页数:37
相关论文
共 38 条
[21]  
Lee JM, 2018, GRAD TEXTS MATH, V176, P1, DOI 10.1007/978-3-319-91755-9
[22]   Forest productivity and water stress in Amazonia: observations from GOSAT chlorophyll fluorescence [J].
Lee, Jung-Eun ;
Frankenberg, Christian ;
van der Tol, Christiaan ;
Berry, Joseph A. ;
Guanter, Luis ;
Boyce, C. Kevin ;
Fisher, Joshua B. ;
Morrow, Eric ;
Worden, John R. ;
Asefi, Salvi ;
Badgley, Grayson ;
Saatchi, Sassan .
PROCEEDINGS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES, 2013, 280 (1761)
[23]   Simple Algorithms for Optimization on Riemannian Manifolds with Constraints [J].
Liu, Changshuo ;
Boumal, Nicolas .
APPLIED MATHEMATICS AND OPTIMIZATION, 2020, 82 (03) :949-981
[24]   COMPUTATIONAL EXPERIENCE WITH A PRIMAL-DUAL INTERIOR POINT METHOD FOR LINEAR-PROGRAMMING [J].
LUSTIG, IJ ;
MARSTEN, RE ;
SHANNO, DF .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1991, 152 :191-222
[25]  
Megiddo N., 1989, Progress in Mathematical Programming: Interior-Point and Related Meth- ods, P131, DOI DOI 10.1007/978-1-4613-9617-8_8
[26]  
Nocedal J, 2006, SPRINGER SER OPER RE, P1, DOI 10.1007/978-0-387-40065-5
[27]   SEQUENTIAL QUADRATIC OPTIMIZATION FOR NONLINEAR OPTIMIZATION PROBLEMS ON RIEMANNIAN MANIFOLDS [J].
Obara, Mitsuaki ;
Okuno, Takayuki ;
Takeda, Akiko .
SIAM JOURNAL ON OPTIMIZATION, 2022, 32 (02) :822-853
[28]  
Ortega J. M., 2000, Iterative Solution of Nonlinear Equations in Several Variables
[29]  
Saad Y., 2003, Iterative Methods for Sparse Linear Systems, V2nd ed.
[30]   AN SQP METHOD FOR EQUALITY CONSTRAINED OPTIMIZATION ON HILBERT MANIFOLDS [J].
Schiela, Anton ;
Ortiz, Julian .
SIAM JOURNAL ON OPTIMIZATION, 2021, 31 (03) :2255-2284