A monotone diffusion scheme for 3D general meshes: Application to radiation hydrodynamics in the equilibrium diffusion limit

被引:0
作者
Anguill, Pierre
Blanc, Xavier
Labourasse, Emmanuel
机构
关键词
Finite volume; Diffusion equation; Positive scheme; Radiation hydrodynamics; FINITE-VOLUME SCHEME; PYRAMID SCHEME; SMALL-STENCIL; EQUATIONS;
D O I
10.1016/j.camwa.2024.01.005
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We propose in this article a monotone finite volume diffusion scheme on 3D general meshes for the radiation hydrodynamics. Primary unknowns are averaged value over the cells of the mesh. It requires the evaluation of intermediate unknowns located at the vertices of the mesh. These vertex unknowns are computed using an interpolation method. In a second step, the scheme is made monotone by combining the computed fluxes. It allows to recover monotonicity, while making the scheme nonlinear. This scheme is inserted into a radiation hydrodynamics solver and assessed on radiation shock solutions on deformed meshes.
引用
收藏
页码:56 / 73
页数:18
相关论文
共 40 条
[1]   A nine-point finite volume scheme for the simulation of diffusion in heterogeneous media [J].
Agelas, Leo ;
Eymard, Robert ;
Herbin, Raphaele .
COMPTES RENDUS MATHEMATIQUE, 2009, 347 (11-12) :673-676
[2]   A second-order maximum principle preserving finite volume method for steady convection-diffusion problems [J].
Bertolazzi, E ;
Manzini, G .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2005, 43 (05) :2172-2199
[3]   A positive scheme for diffusion problems on deformed meshes [J].
Blanc, Xavier ;
Labourasse, Emmanuel .
ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2016, 96 (06) :660-680
[4]   A cell-centered Lagrangian hydrodynamics scheme on general unstructured meshes in arbitrary dimension [J].
Carre, G. ;
Del Pino, S. ;
Despres, B. ;
Labourasse, E. .
JOURNAL OF COMPUTATIONAL PHYSICS, 2009, 228 (14) :5160-5183
[5]  
Castor JI, 2004, RAD HYDRODYNAMICS
[6]  
Chandrasekhar S, 1950, International Series of Monographs on Physics, VXIV
[7]  
Coudière Y, 1999, RAIRO-MATH MODEL NUM, V33, P493
[8]   A monotone nonlinear finite volume method for diffusion equations on conformal polyhedral meshes [J].
Danilov, A. A. ;
Vassilevski, Yu. V. .
RUSSIAN JOURNAL OF NUMERICAL ANALYSIS AND MATHEMATICAL MODELLING, 2009, 24 (03) :207-227
[9]   A linearity-preserving finite volume scheme with a diamond stencil for the simulation of anisotropic and highly heterogeneous diffusion problems using tetrahedral meshes [J].
de Lira Filho, Ricardo J. M. ;
dos Santos, Sidicley R. ;
Cavalcante, Tulio de M. ;
Contreras, Fernando R. L. ;
Lyra, Paulo R. M. ;
de Carvalho, Darlan K. E. .
COMPUTERS & STRUCTURES, 2021, 250
[10]   Weak consistency of the cell-centered Lagrangian GLACE scheme on general meshes in any dimension [J].
Despres, Bruno .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2010, 199 (41-44) :2669-2679