Dual consistency regularization with subjective logic for semi-supervised medical image segmentation

被引:6
作者
Lu, Shanfu [1 ]
Yan, Ziye [1 ]
Chen, Wei [2 ]
Cheng, Tingting [3 ,4 ]
Zhang, Zijian [3 ,4 ]
Yang, Guang [5 ,6 ,7 ,8 ]
机构
[1] Percept Vis Med Technol Co Ltd, Guangzhou 510530, Peoples R China
[2] Second Peoples Hosp, Radiotherapy Dept, Neijiang 641000, Peoples R China
[3] Cent South Univ, Xiangya Hosp, Natl Clin Res Ctr Geriatr Disorders, Changsha 41000, Peoples R China
[4] Cent South Univ, Xiangya Hosp, Xiangya Lung Canc Ctr, Changsha 41000, Peoples R China
[5] Imperial Coll London, Bioengn Dept & Imperial X, London, England
[6] Imperial Coll London, Natl Heart & Lung Inst, London, England
[7] Royal Brompton Hosp, Cardiovasc Res Ctr, London, England
[8] Kings Coll London, Sch Biomed Engn & Imaging Sci, London, England
基金
欧盟地平线“2020”; 英国医学研究理事会;
关键词
Semi-supervised learning; Uncertainty estimation; Dual consistency regularization; Subjective logic; Medical image segmentation; NETWORKS;
D O I
10.1016/j.compbiomed.2024.107991
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Semi-supervised learning plays a vital role in computer vision tasks, particularly in medical image analysis. It significantly reduces the time and cost involved in labeling data. Current methods primarily focus on consistency regularization and the generation of pseudo labels. However, due to the model's poor awareness of unlabeled data, aforementioned methods may misguide the model. To alleviate this problem, we propose a dual consistency regularization with subjective logic for semi-supervised medical image segmentation. Specifically, we introduce subjective logic into our semi-supervised medical image segmentation task to estimate uncertainty, and based on the consistency hypothesis, we construct dual consistency regularization under weak and strong perturbations to guide the model's learning from unlabeled data. To evaluate the performance of the proposed method, we performed experiments on three widely used datasets: ACDC, LA, and Pancreas. Experiments show that the proposed method achieved improvement compared with other state-of-the-art (SOTA) methods.
引用
收藏
页数:10
相关论文
共 44 条
[1]   Deep Learning Techniques for Automatic MRI Cardiac Multi-Structures Segmentation and Diagnosis: Is the Problem Solved? [J].
Bernard, Olivier ;
Lalande, Alain ;
Zotti, Clement ;
Cervenansky, Frederick ;
Yang, Xin ;
Heng, Pheng-Ann ;
Cetin, Irem ;
Lekadir, Karim ;
Camara, Oscar ;
Gonzalez Ballester, Miguel Angel ;
Sanroma, Gerard ;
Napel, Sandy ;
Petersen, Steffen ;
Tziritas, Georgios ;
Grinias, Elias ;
Khened, Mahendra ;
Kollerathu, Varghese Alex ;
Krishnamurthi, Ganapathy ;
Rohe, Marc-Michel ;
Pennec, Xavier ;
Sermesant, Maxime ;
Isensee, Fabian ;
Jaeger, Paul ;
Maier-Hein, Klaus H. ;
Full, Peter M. ;
Wolf, Ivo ;
Engelhardt, Sandy ;
Baumgartner, Christian F. ;
Koch, Lisa M. ;
Wolterink, Jelmer M. ;
Isgum, Ivana ;
Jang, Yeonggul ;
Hong, Yoonmi ;
Patravali, Jay ;
Jain, Shubham ;
Humbert, Olivier ;
Jodoin, Pierre-Marc .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2018, 37 (11) :2514-2525
[2]   Local contrastive loss with pseudo-label based self-training for semi-supervised medical image segmentation [J].
Chaitanya, Krishna ;
Erdil, Ertunc ;
Karani, Neerav ;
Konukoglu, Ender .
MEDICAL IMAGE ANALYSIS, 2023, 87
[3]   Semi-supervised Brain Lesion Segmentation with an Adapted Mean Teacher Model [J].
Cui, Wenhui ;
Liu, Yanlin ;
Li, Yuxing ;
Guo, Menghao ;
Li, Yiming ;
Li, Xiuli ;
Wang, Tianle ;
Zeng, Xiangzhu ;
Ye, Chuyang .
INFORMATION PROCESSING IN MEDICAL IMAGING, IPMI 2019, 2019, 11492 :554-565
[4]  
Doersch C, 2021, Arxiv, DOI [arXiv:1606.05908, 10.48550/arXiv.1606.05908]
[5]   Generative Adversarial Networks [J].
Goodfellow, Ian ;
Pouget-Abadie, Jean ;
Mirza, Mehdi ;
Xu, Bing ;
Warde-Farley, David ;
Ozair, Sherjil ;
Courville, Aaron ;
Bengio, Yoshua .
COMMUNICATIONS OF THE ACM, 2020, 63 (11) :139-144
[6]  
Guotai Wang, 2020, Medical Image Computing and Computer Assisted Intervention - MICCAI 2020. 23rd International Conference. Proceedings. Lecture Notes in Computer Science (LNCS 12264), P279, DOI 10.1007/978-3-030-59719-1_28
[7]  
Jsang A., 2018, Subjective Logic: A formalism for reasoning under uncertainty
[8]  
Kumar A., 2011, P 28 INT C MACH LEAR, P393, DOI DOI 10.5555/3104482.3104532
[9]  
Lakshminarayanan B, 2017, ADV NEUR IN, V30
[10]   A survey on deep learning in medical image analysis [J].
Litjens, Geert ;
Kooi, Thijs ;
Bejnordi, Babak Ehteshami ;
Setio, Arnaud Arindra Adiyoso ;
Ciompi, Francesco ;
Ghafoorian, Mohsen ;
van der Laak, Jeroen A. W. M. ;
van Ginneken, Bram ;
Sanchez, Clara I. .
MEDICAL IMAGE ANALYSIS, 2017, 42 :60-88