On the generalized Cochrane sum with Dirichlet characters

被引:0
作者
Wang, Jiankang [1 ]
Xu, Zhefeng [1 ]
Jia, Minmin [1 ]
机构
[1] Northwest Univ, Res Ctr Number Theory & Its Applicat, Xian 710127, Peoples R China
来源
AIMS MATHEMATICS | 2023年 / 8卷 / 12期
基金
中国国家自然科学基金;
关键词
generalized Cochrane sum; Dirichlet character; upper bound; mean value; MEAN-VALUE;
D O I
10.3934/math.20231542
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we defined a new generalized Cochrane sum with Dirichlet characters, and gave the upper bound of the generalized Cochrane sum with Dirichlet characters. Moreover, we studied the asymptotic estimation problem of the mean value of the generalized Cochrane sum with Dirichlet characters and obtained a sharp asymptotic formula for it. By using this asymptotic formula, we also gave the mean value of the generalized Dedekind sum.
引用
收藏
页码:30182 / 30193
页数:12
相关论文
共 13 条
  • [1] Apostol T. M., 1976, INTRO ANAL NUMBER TH
  • [2] Liu H. Y., 2004, Soochow J. Math., V30, P165
  • [3] A note on the upper bound estimate of high-dimensional Cochrane sums
    Liu, Huaning
    [J]. JOURNAL OF NUMBER THEORY, 2007, 125 (01) : 7 - 13
  • [4] Liu HY, 2005, RAMANUJAN J, V9, P373
  • [5] Upper bound estimate of incomplete Cochrane sum
    Ma, Yuankui
    Peng, Wen
    Zhang, Tianping
    [J]. OPEN MATHEMATICS, 2017, 15 : 852 - 858
  • [6] Rademacher H., 1972, The Carus Mathematical Monographs, V16
  • [7] On the mean value of general Cochrane sum
    Ren, Dongmei
    Yi, Yuan
    [J]. PROCEEDINGS OF THE JAPAN ACADEMY SERIES A-MATHEMATICAL SCIENCES, 2010, 86 (01) : 1A - 5A
  • [8] Xie M., 2001, Acta Math. Sin. (Chinese Series), V44, P85
  • [9] On the order of the high-dimensional Cochrane sum and its mean value
    Xu, ZF
    Zhang, WP
    [J]. JOURNAL OF NUMBER THEORY, 2006, 117 (01) : 131 - 145
  • [10] Some new sums related to D. H. Lehmer problem
    Zhang, Han
    Zhang, Wenpeng
    [J]. CZECHOSLOVAK MATHEMATICAL JOURNAL, 2015, 65 (04) : 915 - 922