Long-time behavior for a nonlinear Timoshenko system: Thermal damping versus weak damping of variable-exponents type

被引:5
作者
Al-Mahdi, Adel M. [1 ,2 ]
机构
[1] King Fahd Univ Petr & Minerals, Preparatory Year Program, Dhahran 31261, Saudi Arabia
[2] King Fahd Univ Petr & Minerals, Interdisciplinary Res Ctr Construct & Bldg Mat, Dhahran 31261, Saudi Arabia
来源
AIMS MATHEMATICS | 2023年 / 8卷 / 12期
关键词
thermoelastic Timoshenko system; variable exponents; embedding theory; Coleman-Gurtin's law; general decay; energy method; GENERAL DECAY; ASYMPTOTIC STABILITY; GLOBAL EXISTENCE; EQUATION; ENERGY; RATES; MODELS; SHEAR;
D O I
10.3934/math.20231515
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work, we consider a nonlinear thermoelastic Timoshenko system with a timedependent coefficient where the heat conduction is given by Coleman-Gurtin [1]. Consequently, the Fourier and Gurtin-Pipkin laws are special cases. We prove that the system is exponentially and polynomially stable. The equality of the wave speeds is not imposed unless the system is not fully damped by the thermoelasticity effect. In other words, the thermoelasticity is only coupled to the first equation in the system. By constructing a suitable Lyapunov functional, we establish exponential and polynomial decay rates for the system. We noticed that the decay sometimes depends on the behavior of the thermal kernel, the variable exponent, and the time-dependent coefficient. Our results extend and improve some earlier results in the literature especially the recent results by Fareh [2], Mustafa [3] and Al-Mahdi and Al-Gharabli [4].
引用
收藏
页码:29577 / 29603
页数:27
相关论文
共 60 条
[1]   New diffusion models in image processing [J].
Aboulaich, R. ;
Meskine, D. ;
Souissi, A. .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2008, 56 (04) :874-882
[2]   Existence and stability results of a plate equation with nonlinear damping and source term [J].
Al-Gharabli, Mohammad M. ;
Al-Mahdi, Adel M. .
ELECTRONIC RESEARCH ARCHIVE, 2022, 30 (11) :4038-4065
[3]   Energy Decay Estimates of a Timoshenko System with Two Nonlinear Variable Exponent Damping Terms [J].
Al-Mahdi, Adel M. ;
Al-Gharabli, Mohammad M. .
MATHEMATICS, 2023, 11 (03)
[4]   Well-posedness, theoretical and numerical stability results of a memory-type porous thermoelastic system [J].
Al-Mahdi, Adel M. ;
Kafini, Mohammad ;
Hassan, Jamilu Hashim ;
Alahyane, Mohamed .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2022, 73 (03)
[5]   New decay results for a viscoelastic-type Timoshenko system with infinite memory [J].
Al-Mahdi, Adel M. ;
Al-Gharabli, Mohammad M. ;
Guesmia, Aissa ;
Messaoudi, Salim A. .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2021, 72 (01)
[6]   Convexity and weighted integral inequalities for energy decay rates of nonlinear dissipative hyperbolic systems [J].
Alabau-Boussouira, F .
APPLIED MATHEMATICS AND OPTIMIZATION, 2005, 51 (01) :61-105
[7]   Stability to 1-D thermoelastic Timoshenko beam acting on shear force [J].
Almeida Junior, Dilberto da S. ;
Santos, M. L. ;
Munoz Rivera, J. E. .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2014, 65 (06) :1233-1249
[8]   Non-Homogeneous Thermoelastic Timoshenko Systems [J].
Alves, M. S. ;
Jorge Silva, M. A. ;
Ma, T. F. ;
Munoz Rivera, J. E. .
BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2017, 48 (03) :461-484
[9]   Invariance of decay rate with respect to boundary conditions in thermoelastic Timoshenko systems [J].
Alves, M. S. ;
Jorge Silva, M. A. ;
Ma, T. F. ;
Munoz Rivera, J. E. .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2016, 67 (03)
[10]   ON MODELING AND UNIFORM STABILITY OF A PARTIALLY DISSIPATIVE VISCOELASTIC TIMOSHENKO SYSTEM [J].
Alves, Michele O. ;
Gomes Tavares, Eduardo H. ;
Jorge Silva, Marcio A. ;
Rodrigues, Jose H. .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2019, 51 (06) :4520-4543