Path towards mRNA delivery for cancer immunotherapy from bench to bedside

被引:12
作者
Chen, Wenfei [1 ,2 ,3 ]
Zhu, Yining [2 ,3 ,4 ]
He, Jinhan [1 ]
Sun, Xun [2 ,3 ]
机构
[1] Sichuan Univ, West China Hosp, Inst Metab Dis & Pharmacotherapy, Dept Pharm, Chengdu 610041, Peoples R China
[2] Sichuan Univ, West China Sch Pharm, Key Lab Drug Targeting & Drug Delivery Syst, Sichuan Engn Lab Plant Sourced Drug,Educ Minist, Chengdu 610041, Peoples R China
[3] Sichuan Univ, Sichuan Res Ctr Drug Precis Ind Technol, West China Sch Pharm, Chengdu 610041, Peoples R China
[4] Johns Hopkins Univ, Sch Med, Dept Biomed Engn, Baltimore, MD 21218 USA
来源
THERANOSTICS | 2024年 / 14卷 / 01期
基金
中国国家自然科学基金;
关键词
TUMOR-ASSOCIATED ANTIGEN; DENDRITIC CELLS; LIPID NANOPARTICLES; T-LYMPHOCYTES; IN-VITRO; VACCINE; EXPRESSION; MACROPINOCYTOSIS; ELECTROPORATION; INTERLEUKIN-12;
D O I
10.7150/thno.89247
中图分类号
R-3 [医学研究方法]; R3 [基础医学];
学科分类号
1001 ;
摘要
Messenger RNA (mRNA) has emerged as a promising therapeutic agent for the prevention and treatment of various diseases. mRNA vaccines, in particular, offer an alternative approach to conventional vaccines, boasting high potency, rapid development capabilities, cost-effectiveness, and safe administration. However, the clinical application of mRNA vaccines is hindered by the challenges of mRNA instability and inefficient in vivo delivery. In recent times, remarkable technological advancements have emerged to address these challenges, utilizing two main approaches: ex vivo transfection of dendritic cells (DCs) with mRNA and direct injection of mRNA-based therapeutics, either with or without a carrier. This review offers a comprehensive overview of major non-viral vectors employed for mRNA vaccine delivery. It showcases notable preclinical and clinical studies in the field of cancer immunotherapy and discusses important considerations for advancing these promising vaccine platforms for broader therapeutic applications. Additionally, we provide insights into future possibilities and the remaining challenges in mRNA delivery technology, emphasizing the significance of ongoing research in mRNA-based therapeutics.
引用
收藏
页码:96 / 115
页数:20
相关论文
共 153 条
[1]   CD83 expression on dendritic cells and T cells: Correlation with effective immune responses [J].
Aerts-Toegaert, Cindy ;
Heirman, Carlo ;
Tuyaerts, Sandra ;
Corthals, Jurgen ;
Aerts, Joeri L. ;
Bonehill, Aude ;
Thielemans, Kris ;
Breckpot, Karine .
EUROPEAN JOURNAL OF IMMUNOLOGY, 2007, 37 (03) :686-695
[2]   The Onpattro story and the clinical translation of nanomedicines containing nucleic acid-based drugs [J].
Akinc, Akin ;
Maier, Martin A. ;
Manoharan, Muthiah ;
Fitzgerald, Kevin ;
Jayaraman, Muthusamy ;
Barros, Scott ;
Ansell, Steven ;
Du, Xinyao ;
Hope, Michael J. ;
Madden, Thomas D. ;
Mui, Barbara L. ;
Semple, Sean C. ;
Tam, Ying K. ;
Ciufolini, Marco ;
Witzigmann, Dominik ;
Kulkarni, Jayesh A. ;
van der Meel, Roy ;
Cullis, Pieter R. .
NATURE NANOTECHNOLOGY, 2019, 14 (12) :1084-1087
[3]   Efficacy and Safety of the mRNA-1273 SARS-CoV-2 Vaccine [J].
Baden, Lindsey R. ;
El Sahly, Hana M. ;
Essink, Brandon ;
Kotloff, Karen ;
Frey, Sharon ;
Novak, Rick ;
Diemert, David ;
Spector, Stephen A. ;
Rouphael, Nadine ;
Creech, C. Buddy ;
McGettigan, John ;
Khetan, Shishir ;
Segall, Nathan ;
Solis, Joel ;
Brosz, Adam ;
Fierro, Carlos ;
Schwartz, Howard ;
Neuzil, Kathleen ;
Corey, Larry ;
Gilbert, Peter ;
Janes, Holly ;
Follmann, Dean ;
Marovich, Mary ;
Mascola, John ;
Polakowski, Laura ;
Ledgerwood, Julie ;
Graham, Barney S. ;
Bennett, Hamilton ;
Pajon, Rolando ;
Knightly, Conor ;
Leav, Brett ;
Deng, Weiping ;
Zhou, Honghong ;
Han, Shu ;
Ivarsson, Melanie ;
Miller, Jacqueline ;
Zaks, Tal .
NEW ENGLAND JOURNAL OF MEDICINE, 2021, 384 (05) :403-416
[4]   A Facile Method for the Removal of dsRNA Contaminant from In Vitro-Transcribed mRNA [J].
Baiersdoerfer, Markus ;
Boros, Gabor ;
Muramatsu, Hiromi ;
Mahiny, Azita ;
Vlatkovic, Irena ;
Sahin, Ugur ;
Kariko, Katalin .
MOLECULAR THERAPY-NUCLEIC ACIDS, 2019, 15 :26-35
[5]   The clinical progress of mRNA vaccines and immunotherapies [J].
Barbier, Ann J. ;
Jiang, Allen Yujie ;
Zhang, Peng ;
Wooster, Richard ;
Anderson, Daniel G. .
NATURE BIOTECHNOLOGY, 2022, 40 (06) :840-854
[6]   An overview of the vaccine platforms to combat COVID-19 with a focus on the subunit vaccines [J].
Bayani, Fatemeh ;
Hashkavaei, Negin Safaei ;
Arjmand, Sareh ;
Rezaei, Shokouh ;
Uskokovic, Vuk ;
Alijanianzadeh, Mahdi ;
Uversky, Vladimir N. ;
Siadat, Seyed Omid Ranaei ;
Mozaffari-Jovin, Sina ;
Sefidbakht, Yahya .
PROGRESS IN BIOPHYSICS & MOLECULAR BIOLOGY, 2023, 178 :32-49
[7]   mRNA therapeutics in cancer immunotherapy [J].
Beck, Jan D. ;
Reidenbach, Daniel ;
Salomon, Nadja ;
Sahin, Ugur ;
Tureci, Ozlem ;
Vormehr, Mathias ;
Kranz, Lena M. .
MOLECULAR CANCER, 2021, 20 (01)
[8]   Oligo(serine ester) Charge-Altering Releasable Transporters: Organocatalytic Ring-Opening Polymerization and their Use for in Vitro and in Vivo mRNA Delivery [J].
Benner, Nancy L. ;
McClellan, Rebecca L. ;
Turlington, Christopher R. ;
Haabeth, Ole A. W. ;
Waymouth, Robert M. ;
Wender, Paul A. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2019, 141 (21) :8416-8421
[9]   mRNA-based dendritic cell vaccines [J].
Benteyn, Daphne ;
Heirman, Carlo ;
Bonehill, Aude ;
Thielemans, Kris ;
Breckpot, Karine .
EXPERT REVIEW OF VACCINES, 2015, 14 (02) :161-176
[10]   Intralymphatic mRNA vaccine induces CD8 T-cell responses that inhibit the growth of mucosally located tumours [J].
Bialkowski, Lukasz ;
van Weijnen, Alexia ;
Van der Jeught, Kevin ;
Renmans, Dries ;
Daszkiewicz, Lidia ;
Heirman, Carlo ;
Stange, Geert ;
Breckpot, Karine ;
Aerts, Joeri L. ;
Thielemans, Kris .
SCIENTIFIC REPORTS, 2016, 6