Integrating survey and observer data improves the predictions of New Zealand spatio-temporal models

被引:7
|
作者
Gruess, A. [1 ]
Charsley, A. R. [1 ]
Thorson, J. T. [2 ]
Anderson, O. F. [1 ]
O'Driscoll, R. L. [1 ]
Wood, B. [1 ]
Breivik, O. N. [3 ]
O'Leary, C. A. [4 ]
机构
[1] Natl Inst Water & Atmospher Res, 301 Evans Bay Parade, Wellington 6021, New Zealand
[2] Natl Marine Fisheries Serv, Resource Ecol & Fisheries Management, Alaska Fisheries Sci Ctr, NOAA, 7600 Sand Point Way NE, Seattle, WA 98115 USA
[3] Norwegian Comp Ctr, Gaustadalleen 23A, N-0373 Oslo, Norway
[4] Natl Marine Fisheries Serv, Resource Assessment & Conservat Engn Div, Alaska Fisheries Sci Ctr, NOAA, 7600 Sand Point Way NE, Seattle, WA 98115 USA
关键词
data integration; New Zealand; observer data; research survey data; spatio-temporal models; VAST modelling platform; SPECIES DISTRIBUTION MODELS; STANDARDIZING CATCH; FISHERIES; DYNAMICS; STOCK; FISH; ABUNDANCE; HABITAT; SPACE;
D O I
10.1093/icesjms/fsad129
中图分类号
S9 [水产、渔业];
学科分类号
0908 ;
摘要
In many situations, species distribution models need to make use of multiple data sources to address their objectives. We developed a spatio-temporal modelling framework that integrates research survey data and data collected by observers onboard fishing vessels while accounting for physical barriers (islands, convoluted coastlines). We demonstrated our framework for two bycatch species in New Zealand deepwater fisheries: spiny dogfish (Squalus acanthias) and javelinfish (Lepidorhynchus denticulatus). Results indicated that employing observer-only data or integrated data is necessary to map fish biomass at the scale of the New Zealand exclusive economic zone, and to interpolate local biomass indices (e.g., for the east coast of the South Island) in years with no survey but available observer data. Results also showed that, if enough survey data are available, fisheries analysts should: (1) develop both an integrated model and a model relying on survey-only data; and (2) for a given geographic area, ultimately choose the index produced with integrated data or the index produced with survey-only data based on the reliability of the interannual variability of the index. We also conducted a simulation experiment, which indicated that the predictions of our spatio-temporal models are virtually insensitive to the consideration of physical barriers.
引用
收藏
页码:1991 / 2007
页数:17
相关论文
共 50 条
  • [21] Incorporating social contact data in spatio-temporal models for infectious disease spread
    Meyer, Sebastian
    Held, Leonhard
    BIOSTATISTICS, 2017, 18 (02) : 338 - 351
  • [22] Bayesian spatio-temporal models for stream networks
    Santos-Fernandez, Edgar
    Ver Hoef, Jay M. E.
    Peterson, Erin
    McGree, James J.
    Isaak, Daniel
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2022, 170
  • [23] POINT PROCESS MODELS FOR SPATIO-TEMPORAL DISTANCE SAMPLING DATA FROM A LARGE-SCALE SURVEY OF BLUE WHALES
    Yuan, Yuan
    Bachl, Fabian E.
    Lindgren, Finn
    Borchers, David L.
    Illian, Janine B.
    Buckland, Stephen T.
    Rue, Havard
    Gerrodette, Tim
    ANNALS OF APPLIED STATISTICS, 2017, 11 (04) : 2270 - 2297
  • [24] Multiscale recurrence analysis of spatio-temporal data
    Riedl, M.
    Marwan, N.
    Kurths, J.
    CHAOS, 2015, 25 (12)
  • [25] Visualization of Spatio-temporal Data of Bus Trips
    Hong Thi Nguyen
    Chi Kim Thi Duong
    Tha Thi Bui
    Phuoc Vinh Tran
    2012 INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION AND INFORMATION SCIENCES (ICCAIS), 2012, : 392 - 397
  • [26] Spatio-temporal autocorrelation of road network data
    Cheng, Tao
    Haworth, James
    Wang, Jiaqiu
    JOURNAL OF GEOGRAPHICAL SYSTEMS, 2012, 14 (04) : 389 - 413
  • [27] Spatio-Temporal Scale Selection in Video Data
    Lindeberg, Tony
    JOURNAL OF MATHEMATICAL IMAGING AND VISION, 2018, 60 (04) : 525 - 562
  • [28] Understanding species distribution in dynamic populations: a new approach using spatio-temporal point process models
    Soriano-Redondo, Andrea
    Jones-Todd, Charlotte M.
    Bearhop, Stuart
    Hilton, Geoff M.
    Lock, Leigh
    Stanbury, Andrew
    Votier, Stephen C.
    Illian, Janine B.
    ECOGRAPHY, 2019, 42 (06) : 1092 - 1102
  • [29] Blockwise Euclidean likelihood for spatio-temporal covariance models
    Morales-Onate, Victor
    Crudu, Federico
    Bevilacqua, Moreno
    ECONOMETRICS AND STATISTICS, 2021, 20 : 176 - 201
  • [30] Data-adaptive spatio-temporal filtering of GRACE data
    Prevost, Paoline
    Chanard, Kristel
    Fleitout, Luce
    Calais, Eric
    Walwer, Damian
    van Dam, Tonie
    Ghil, Michael
    GEOPHYSICAL JOURNAL INTERNATIONAL, 2019, 219 (03) : 2034 - 2055