Integrating survey and observer data improves the predictions of New Zealand spatio-temporal models

被引:7
|
作者
Gruess, A. [1 ]
Charsley, A. R. [1 ]
Thorson, J. T. [2 ]
Anderson, O. F. [1 ]
O'Driscoll, R. L. [1 ]
Wood, B. [1 ]
Breivik, O. N. [3 ]
O'Leary, C. A. [4 ]
机构
[1] Natl Inst Water & Atmospher Res, 301 Evans Bay Parade, Wellington 6021, New Zealand
[2] Natl Marine Fisheries Serv, Resource Ecol & Fisheries Management, Alaska Fisheries Sci Ctr, NOAA, 7600 Sand Point Way NE, Seattle, WA 98115 USA
[3] Norwegian Comp Ctr, Gaustadalleen 23A, N-0373 Oslo, Norway
[4] Natl Marine Fisheries Serv, Resource Assessment & Conservat Engn Div, Alaska Fisheries Sci Ctr, NOAA, 7600 Sand Point Way NE, Seattle, WA 98115 USA
关键词
data integration; New Zealand; observer data; research survey data; spatio-temporal models; VAST modelling platform; SPECIES DISTRIBUTION MODELS; STANDARDIZING CATCH; FISHERIES; DYNAMICS; STOCK; FISH; ABUNDANCE; HABITAT; SPACE;
D O I
10.1093/icesjms/fsad129
中图分类号
S9 [水产、渔业];
学科分类号
0908 ;
摘要
In many situations, species distribution models need to make use of multiple data sources to address their objectives. We developed a spatio-temporal modelling framework that integrates research survey data and data collected by observers onboard fishing vessels while accounting for physical barriers (islands, convoluted coastlines). We demonstrated our framework for two bycatch species in New Zealand deepwater fisheries: spiny dogfish (Squalus acanthias) and javelinfish (Lepidorhynchus denticulatus). Results indicated that employing observer-only data or integrated data is necessary to map fish biomass at the scale of the New Zealand exclusive economic zone, and to interpolate local biomass indices (e.g., for the east coast of the South Island) in years with no survey but available observer data. Results also showed that, if enough survey data are available, fisheries analysts should: (1) develop both an integrated model and a model relying on survey-only data; and (2) for a given geographic area, ultimately choose the index produced with integrated data or the index produced with survey-only data based on the reliability of the interannual variability of the index. We also conducted a simulation experiment, which indicated that the predictions of our spatio-temporal models are virtually insensitive to the consideration of physical barriers.
引用
收藏
页码:1991 / 2007
页数:17
相关论文
共 50 条
  • [1] Impacts of different types of data integration on the predictions of spatio-temporal models: A fishery application and simulation experiment
    Gruss, Arnaud
    O'Driscoll, Richard L.
    Thorson, James T.
    Mckenzie, Jeremy R.
    Ballara, Sira L.
    Charsley, Anthony R.
    FISHERIES RESEARCH, 2025, 284
  • [2] Dynamic spatio-temporal models for spatial data
    Hefley, Trevor J.
    Hooten, Mevin B.
    Hanks, Ephraim M.
    Russell, Robin E.
    Walsh, Daniel P.
    SPATIAL STATISTICS, 2017, 20 : 206 - 220
  • [3] Developing spatio-temporal models using multiple data types for evaluating population trends and habitat usage
    Gruss, Arnaud
    Thorson, James T.
    ICES JOURNAL OF MARINE SCIENCE, 2019, 76 (06) : 1748 - 1761
  • [4] Choosing suitable linear coregionalization models for spatio-temporal data
    De Iaco, S.
    Palma, M.
    Posa, D.
    STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT, 2019, 33 (07) : 1419 - 1434
  • [5] Multivariate Modeling for Spatio-Temporal Radon Flux Predictions
    De Iaco, Sandra
    Cappello, Claudia
    Congedi, Antonella
    Palma, Monica
    ENTROPY, 2023, 25 (07)
  • [6] Supporting a stock assessment with spatio-temporal models fitted to fisheries-dependent data
    Gruss, Arnaud
    McKenzie, Jeremy R.
    Lindegren, Martin
    Bian, Richard
    Hoyle, Simon D.
    Devine, Jennifer A.
    FISHERIES RESEARCH, 2023, 262
  • [7] Integrating marine dynamic environment monitoring data using spatio-temporal data warehouse and ontology
    Zheng, Zhigang
    Zhang, Xin
    Chi, Tianhe
    Wang, Xiaomin
    Zhao, Wen
    2008 PROCEEDINGS OF INFORMATION TECHNOLOGY AND ENVIRONMENTAL SYSTEM SCIENCES: ITESS 2008, VOL 3, 2008, : 48 - 52
  • [8] Spatio-temporal variation in species composition of New Zealand's whitebait fishery
    Yungnickel, Mark R.
    Hickford, Michael J. H.
    Schiel, David R.
    NEW ZEALAND JOURNAL OF MARINE AND FRESHWATER RESEARCH, 2020, 54 (04) : 679 - 694
  • [9] STGP: Spatio-temporal Gaussian process models for longitudinal neuroimaging data
    Hyun, Jung Won
    Li, Yimei
    Huang, Chao
    Styner, Martin
    Lin, Weili
    Zhu, Hongtu
    NEUROIMAGE, 2016, 134 : 550 - 562
  • [10] A statistical modeling approach for spatio-temporal degradation data
    Liu, Xiao
    Yeo, Kyongmin
    Kalagnanam, Jayant
    JOURNAL OF QUALITY TECHNOLOGY, 2018, 50 (02) : 166 - 182