MR-BOIL: Causal inference in one-sample Mendelian randomization for binary outcome with integrated likelihood method

被引:0
作者
Shi, Dapeng [1 ]
Wang, Yuquan [2 ]
Zhang, Ziyong [3 ]
Cao, Yunlong [2 ]
Hu, Yue-Qing [1 ,2 ]
机构
[1] Fudan Univ, Shanghai Ctr Math Sci, Shanghai, Peoples R China
[2] Fudan Univ, Human Phenome Inst, Inst Biostat, Sch Life Sci,State Key Lab Genet Engn, Shanghai, Peoples R China
[3] Fudan Univ, Sch Management, Dept Stat & Data Sci, Shanghai, Peoples R China
基金
中国国家自然科学基金;
关键词
binary outcome; causal relationship; expectation maximization algorithm; instrumental variable; logistic model; Mendelian randomization; noncollapsing; INSTRUMENTAL VARIABLE ESTIMATORS; ODDS RATIO; MAXIMUM-LIKELIHOOD; WEAK INSTRUMENTS; EM ALGORITHM; IDENTIFICATION; BIAS; REGRESSION; ROBUST;
D O I
10.1002/gepi.22520
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Mendelian randomization is a statistical method for inferring the causal relationship between exposures and outcomes using an economics-derived instrumental variable approach. The research results are relatively complete when both exposures and outcomes are continuous variables. However, due to the noncollapsing nature of the logistic model, the existing methods inherited from the linear model for exploring binary outcome cannot take the effect of confounding factors into account, which leads to biased estimate of the causal effect. In this article, we propose an integrated likelihood method MR-BOIL to investigate causal relationships for binary outcomes by treating confounders as latent variables in one-sample Mendelian randomization. Under the assumption of a joint normal distribution of the confounders, we use expectation maximization algorithm to estimate the causal effect. Extensive simulations demonstrate that the estimator of MR-BOIL is asymptotically unbiased and that our method improves statistical power without inflating type I error rate. We then apply this method to analyze the data from Atherosclerosis Risk in Communications Study. The results show that MR-BOIL can better identify plausible causal relationships with high reliability, compared with the unreliable results of existing methods. MR-BOIL is implemented in R and the corresponding R code is provided for free download.
引用
收藏
页码:332 / 357
页数:26
相关论文
共 53 条
  • [1] A novel Mendelian randomization method with binary risk factor and outcome
    Allman, Philip H.
    Aban, Inmaculada
    Long, Dustin M.
    Bridges, Stephen L., Jr.
    Srinivasasainagendra, Vinodh
    MacKenzie, Todd
    Cutter, Gary
    Tiwari, Hemant K.
    [J]. GENETIC EPIDEMIOLOGY, 2021, 45 (05) : 549 - 560
  • [2] A global reference for human genetic variation
    Altshuler, David M.
    Durbin, Richard M.
    Abecasis, Goncalo R.
    Bentley, David R.
    Chakravarti, Aravinda
    Clark, Andrew G.
    Donnelly, Peter
    Eichler, Evan E.
    Flicek, Paul
    Gabriel, Stacey B.
    Gibbs, Richard A.
    Green, Eric D.
    Hurles, Matthew E.
    Knoppers, Bartha M.
    Korbel, Jan O.
    Lander, Eric S.
    Lee, Charles
    Lehrach, Hans
    Mardis, Elaine R.
    Marth, Gabor T.
    McVean, Gil A.
    Nickerson, Deborah A.
    Wang, Jun
    Wilson, Richard K.
    Boerwinkle, Eric
    Doddapaneni, Harsha
    Han, Yi
    Korchina, Viktoriya
    Kovar, Christie
    Lee, Sandra
    Muzny, Donna
    Reid, Jeffrey G.
    Zhu, Yiming
    Chang, Yuqi
    Feng, Qiang
    Fang, Xiaodong
    Guo, Xiaosen
    Jian, Min
    Jiang, Hui
    Jin, Xin
    Lan, Tianming
    Li, Guoqing
    Li, Jingxiang
    Li, Yingrui
    Liu, Shengmao
    Liu, Xiao
    Lu, Yao
    Ma, Xuedi
    Tang, Meifang
    Wang, Bo
    [J]. NATURE, 2015, 526 (7571) : 68 - +
  • [3] ESTIMATION OF THE PARAMETERS OF A SINGLE EQUATION IN A COMPLETE SYSTEM OF STOCHASTIC EQUATIONS
    ANDERSON, TW
    RUBIN, H
    [J]. ANNALS OF MATHEMATICAL STATISTICS, 1949, 20 (01): : 46 - 63
  • [4] Angrist JD, 1996, J AM STAT ASSOC, V91, P444, DOI 10.2307/2291629
  • [5] [Anonymous], SOCIOLOGICAL METHODO, DOI DOI 10.2307/271055
  • [6] Bottou L., 2012, NEURAL NETWORKS TRIC, P421, DOI DOI 10.1007/978-3-642-35289-8_25
  • [7] Mendelian randomization analysis of case-control data using structural mean models
    Bowden, Jack
    Vansteelandt, Stijn
    [J]. STATISTICS IN MEDICINE, 2011, 30 (06) : 678 - 694
  • [8] A review of instrumental variable estimators for Mendelian randomization
    Burgess, Stephen
    Small, Dylan S.
    Thompson, Simon G.
    [J]. STATISTICAL METHODS IN MEDICAL RESEARCH, 2017, 26 (05) : 2333 - 2355
  • [9] Lack of Identification in Semiparametric Instrumental Variable Models With Binary Outcomes
    Burgess, Stephen
    Granell, Raquel
    Palmer, Tom M.
    Sterne, Jonathan A. C.
    Didelez, Vanessa
    [J]. AMERICAN JOURNAL OF EPIDEMIOLOGY, 2014, 180 (01) : 111 - 119
  • [10] Identifying the odds ratio estimated by a two-stage instrumental variable analysis with a logistic regression model
    Burgess, Stephen
    [J]. STATISTICS IN MEDICINE, 2013, 32 (27) : 4726 - 4747