Artificial Intelligence for Predicting and Diagnosing Complications of Diabetes

被引:24
作者
Huang, Jingtong [1 ]
Yeung, Andrea M. M. [1 ]
Armstrong, David G. G. [2 ]
Battarbee, Ashley N. N. [3 ]
Cuadros, Jorge [4 ]
Espinoza, Juan C. C. [5 ]
Kleinberg, Samantha [6 ]
Mathioudakis, Nestoras [7 ]
Swerdlow, Mark A. A. [2 ]
Klonoff, David C. C. [1 ,8 ]
机构
[1] Diabet Technol Soc, Burlingame, CA USA
[2] Univ Southern Calif, Keck Sch Med, Los Angeles, CA USA
[3] Univ Alabama Birmingham, Ctr Womens Reprod Hlth, Birmingham, AL USA
[4] Univ Calif Berkeley, Meredith Morgan Optometr Eye Ctr, Berkeley, CA USA
[5] Univ Southern Calif, Childrens Hosp Los Angeles, Los Angeles, CA USA
[6] Stevens Inst Technol, Hoboken, NJ USA
[7] Johns Hopkins Univ, Baltimore, MD USA
[8] Diabet Res Inst, Mills Peninsula Med Ctr, 100 South San Mateo Dr,Room 5147, San Mateo, CA 94401 USA
关键词
diabetes; complications; artificial intelligence; machine learning algorithm; risk factors; prediction; KIDNEY-DISEASE; INPATIENT HYPOGLYCEMIA; PERIPHERAL NEUROPATHY; VALIDATION; RISK; MODEL; NEPHROPATHY;
D O I
10.1177/19322968221124583
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Artificial intelligence can use real-world data to create models capable of making predictions and medical diagnosis for diabetes and its complications. The aim of this commentary article is to provide a general perspective and present recent advances on how artificial intelligence can be applied to improve the prediction and diagnosis of six significant complications of diabetes including (1) gestational diabetes, (2) hypoglycemia in the hospital, (3) diabetic retinopathy, (4) diabetic foot ulcers, (5) diabetic peripheral neuropathy, and (6) diabetic nephropathy.
引用
收藏
页码:224 / 238
页数:15
相关论文
共 99 条
[1]   Prediction of diabetic kidney disease with machine learning algorithms, upon the initial diagnosis of type 2 diabetes mellitus [J].
Allen, Angier ;
Iqbal, Zohora ;
Green-Saxena, Abigail ;
Hurtado, Myrna ;
Hoffman, Jana ;
Mao, Qingqing ;
Das, Ritankar .
BMJ OPEN DIABETES RESEARCH & CARE, 2022, 10 (01)
[2]  
[Anonymous], 2018, Obstet Gynecol, V131, pe49, DOI 10.1097/AOG.0000000000002501
[3]   Prediction of gestational diabetes based on nationwide electronic health records [J].
Artzi, Nitzan Shalom ;
Shilo, Smadar ;
Hadar, Eran ;
Rossman, Hagai ;
Barbash-Hazan, Shiri ;
Ben-Haroush, Avi ;
Balicer, Ran D. ;
Feldman, Becca ;
Wiznitzer, Arnon ;
Segal, Eran .
NATURE MEDICINE, 2020, 26 (01) :71-+
[4]   Diabetic retinopathy [J].
Barth, Teresa ;
Helbig, Horst .
KLINISCHE MONATSBLATTER FUR AUGENHEILKUNDE, 2021, 238 (10) :1143-1157
[5]   Classification of painful or painless diabetic peripheral neuropathy and identification of the most powerful predictors using machine learning models in large cross-sectional cohorts [J].
Baskozos, Georgios ;
Themistocleous, Andreas C. ;
Hebert, Harry L. ;
Pascal, Mathilde M., V ;
John, Jishi ;
Callaghan, Brian C. ;
Laycock, Helen ;
Granovsky, Yelena ;
Crombez, Geert ;
Yarnitsky, David ;
Rice, Andrew S. C. ;
Smith, Blair H. ;
Bennett, David L. H. .
BMC MEDICAL INFORMATICS AND DECISION MAKING, 2022, 22 (01)
[6]   Machine-learning-based early prediction of end-stage renal disease in patients with diabetic kidney disease using clinical trials data [J].
Belur Nagaraj, Sunil ;
Pena, Michelle J. ;
Ju, Wenjun ;
Heerspink, Hiddo L. .
DIABETES OBESITY & METABOLISM, 2020, 22 (12) :2479-2486
[7]  
Bhatt Arun, 2021, Perspect Clin Res, V12, P1, DOI 10.4103/picr.PICR_312_20
[8]   Addressing Artificial Intelligence Bias in Retinal Diagnostics [J].
Burlina, Philippe ;
Joshi, Neil ;
Paul, William ;
Pacheco, Katia D. ;
Bressler, Neil M. .
TRANSLATIONAL VISION SCIENCE & TECHNOLOGY, 2021, 10 (02) :1-13
[9]   Artificial Intelligence to Reduce Ocular Health Disparities: Moving From Concept to Implementation [J].
Campbell, John P. ;
Mathenge, Ciku ;
Cherwek, Hunter ;
Balaskas, Konstantinos ;
Pasquale, Louis R. ;
Keane, Pearse A. ;
Chiang, Michael F. .
TRANSLATIONAL VISION SCIENCE & TECHNOLOGY, 2021, 10 (03) :19-19
[10]   Diabetic Foot Ulcer Grand Challenge 2021: Evaluation and Summary [J].
Cassidy, Bill ;
Kendrick, Connah ;
Reeves, Neil D. ;
Pappachan, Joseph M. ;
O'Shea, Claire ;
Armstrong, David G. ;
Yap, Moi Hoon .
DIABETIC FOOT ULCERS GRAND CHALLENGE (DFUC 2021), 2022, 13183 :90-105