Risk prediction of the metabolic syndrome using TyG Index and SNPs: a 10-year longitudinal prospective cohort study

被引:15
作者
Kang, Sang Wook [1 ]
Kim, Su Kang [2 ]
Kim, Young Sik [3 ]
Park, Min-Su [4 ]
机构
[1] Dankook Univ, Coll Dent, Dept Dent Pharmacol, Cheonan, South Korea
[2] Catholic Kwandong Univ, Dept Biomed Lab Sci, Kangnung, South Korea
[3] Kyung Hee Univ, Management Res Inst, Seoul, South Korea
[4] Kyung Hee Univ, Sch Med, Dept Surg, Seoul, South Korea
关键词
Single-nucleotide polymorphism; Triglyceride glucose index; Metabolic syndrome; INSULIN-RESISTANCE; GLUCOSE; TRIGLYCERIDES; PRODUCT; DISEASE;
D O I
10.1007/s11010-022-04494-1
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
TyG (triglyceride and glucose) index using triglyceride and fasting blood glucose is recommended as a useful marker for insulin resistance. To clarify whether the TyG index is a marker for predicting metabolic syndrome (MetS) and to investigate the importance of single-nucleotide polymorphisms (SNPs) in MetS diagnosis. From 2001 to 2014, a longitudinal prospective cohort study of 3580 adults aged 40-70 years was conducted. The area under the receiver operating characteristic curves (AUROC) and Youden index (YI) was calculated to assess the diagnostic value. During the 14-year follow-up, 1270 subjects developed MetS. Five SNPs in four genes (BUD13 rs10790162, ZPR1 rs2075290, APOA5 rs2266788, APOA5 rs2075291, and MKL1 rs4507196) significantly correlated with susceptibility to MetS (p < 0.00005). The areas under the curve of TyG index and HOMA-IR were 0.854 (95% confidence interval [CI], 0.841-0.867) and 0.702 (95% CI, 0.684-0.721), respectively. Despite no statistical significance, AUROC and YI were increased when MetS was diagnosed using TyG index and the five SNPs. TyG index might be useful for identifying individuals at high risk of developing MetS. The combination of TyG index and SNPs showed better diagnostic accuracy than TyG index alone, indicating the potential value of novel SNPs for MetS diagnosis.
引用
收藏
页码:39 / 45
页数:7
相关论文
共 15 条
[1]   A Phenomics-Based Strategy Identifies Loci on APOC1, BRAP, and PLCG1 Associated with Metabolic Syndrome Phenotype Domains [J].
Avery, Christy L. ;
He, Qianchuan ;
North, Kari E. ;
Ambite, Jose L. ;
Boerwinkle, Eric ;
Fornage, Myriam ;
Hindorff, Lucia A. ;
Kooperberg, Charles ;
Meigs, James B. ;
Pankow, James S. ;
Pendergrass, Sarah A. ;
Psaty, Bruce M. ;
Ritchie, Marylyn D. ;
Rotter, Jerome I. ;
Taylor, Kent D. ;
Wilkens, Lynne R. ;
Heiss, Gerardo ;
Lin, Dan Yu .
PLOS GENETICS, 2011, 7 (10)
[2]   Metabolic syndrome and incident diabetes - Current state of the evidence [J].
Ford, Earl S. ;
Li, Chaoyang ;
Sattar, Naveed .
DIABETES CARE, 2008, 31 (09) :1898-1904
[3]   Metabolic syndrome and risk of cardiovascular disease: A meta-analysis [J].
Galassi, Andrea ;
Reynolds, Kristi ;
He, Jiang .
AMERICAN JOURNAL OF MEDICINE, 2006, 119 (10) :812-819
[4]   Two-stage association study to identify the genetic susceptibility of a novel common variant of rs2075290 in ZPR1 to type 2 diabetes [J].
Guan, Fanglin ;
Niu, Yu ;
Zhang, Tianxiao ;
Liu, Songfang ;
Ma, Lei ;
Qi, Ting ;
Feng, Jia ;
Zuo, Hong ;
Li, Guohong ;
Liu, Xufeng ;
Wang, Shujin .
SCIENTIFIC REPORTS, 2016, 6
[5]   The Product of Triglycerides and Glucose, a Simple Measure of Insulin Sensitivity. Comparison with the Euglycemic-Hyperinsulinemic Clamp [J].
Guerrero-Romero, Fernando ;
Simental-Mendia, Luis E. ;
Gonzalez-Ortiz, Manuel ;
Martinez-Abundis, Esperanza ;
Ramos-Zavala, Maria G. ;
Hernandez-Gonzalez, Sandra O. ;
Jacques-Camarena, Omar ;
Rodriguez-Moran, Martha .
JOURNAL OF CLINICAL ENDOCRINOLOGY & METABOLISM, 2010, 95 (07) :3347-3351
[6]   Sequence Analysis of APOA5 Among the Kuwaiti Population Identifies Association of rs2072560, rs2266788, and rs662799 With TG and VLDL Levels [J].
Jasim, Anfal A. ;
Al-Bustan, Suzanne A. ;
Al-Kandari, Wafa ;
Al-Serri, Ahmad ;
AlAskar, Huda .
FRONTIERS IN GENETICS, 2018, 9
[7]   The association of polymorphic variants, rs2267788, rs1333049 and rs2383207 with coronary artery disease, its severity and presentation in North Indian population [J].
Kashyap, Shiridhar ;
Kumar, Sudeep ;
Agarwal, Vikas ;
Misra, Durga P. ;
Rai, Mohit K. ;
Kapoor, Aditya .
GENE, 2018, 648 :89-96
[8]   Metabolic clustering of risk factors: evaluation of Triglyceride-glucose index (TyG index) for evaluation of insulin resistance [J].
Khan, Sikandar Hayat ;
Sobia, Farah ;
Niazi, Najmusaqib Khan ;
Manzoor, Syed Mohsin ;
Fazal, Nadeem ;
Ahmad, Fowad .
DIABETOLOGY & METABOLIC SYNDROME, 2018, 10
[9]   A Bivariate Genome-Wide Approach to Metabolic Syndrome STAMPEED Consortium [J].
Kraja, Aldi T. ;
Vaidya, Dhananjay ;
Pankow, James S. ;
Goodarzi, Mark O. ;
Assimes, Themistocles L. ;
Kullo, Iftikhar J. ;
Sovio, Ulla ;
Mathias, Rasika A. ;
Sun, Yan V. ;
Franceschini, Nora ;
Absher, Devin ;
Li, Guo ;
Zhang, Qunyuan ;
Feitosa, Mary F. ;
Glazer, Nicole L. ;
Haritunians, Talin ;
Hartikainen, Anna-Liisa ;
Knowles, Joshua W. ;
North, Kari E. ;
Iribarren, Carlos ;
Kral, Brian ;
Yanek, Lisa ;
O'Reilly, Paul F. ;
McCarthy, Mark I. ;
Jaquish, Cashell ;
Couper, David J. ;
Chakravarti, Aravinda ;
Psaty, Bruce M. ;
Becker, Lewis C. ;
Province, Michael A. ;
Boerwinkle, Eric ;
Quertermous, Thomas ;
Palotie, Leena ;
Jarvelin, Marjo-Riitta ;
Becker, Diane M. ;
Kardia, Sharon L. R. ;
Rotter, Jerome I. ;
Chen, Yii-Der Ida ;
Borecki, Ingrid B. .
DIABETES, 2011, 60 (04) :1329-1339
[10]   Genome-Wide Screen for Metabolic Syndrome Susceptibility Loci Reveals Strong Lipid Gene Contribution But No Evidence for Common Genetic Basis for Clustering of Metabolic Syndrome Traits [J].
Kristiansson, Kati ;
Perola, Markus ;
Tikkanen, Emmi ;
Kettunen, Johannes ;
Surakka, Ida ;
Havulinna, Aki S. ;
Stancakova, Alena ;
Barnes, Chris ;
Widen, Elisabeth ;
Kajantie, Eero ;
Eriksson, Johan G. ;
Viikari, Jorma ;
Kahonen, Mika ;
Lehtimaki, Terho ;
Raitakari, Olli T. ;
Hartikainen, Anna-Liisa ;
Ruokonen, Aimo ;
Pouta, Anneli ;
Jula, Antti ;
Kangas, Antti J. ;
Soininen, Pasi ;
Ala-Korpela, Mika ;
Mannisto, Satu ;
Jousilahti, Pekka ;
Bonnycastle, Lori L. ;
Jarvelin, Marjo-Riitta ;
Kuusisto, Johanna ;
Collins, Francis S. ;
Laakso, Markku ;
Hurles, Matthew E. ;
Palotie, Aarno ;
Peltonen, Leena ;
Ripatti, Samuli ;
Salomaa, Veikko .
CIRCULATION-CARDIOVASCULAR GENETICS, 2012, 5 (02) :242-249