Integrated lithium niobate microwave photonic processing engine

被引:93
作者
Feng, Hanke [1 ,2 ,7 ]
Ge, Tong [1 ,2 ,7 ]
Guo, Xiaoqing [1 ]
Wang, Benshan [3 ]
Zhang, Yiwen [1 ]
Chen, Zhaoxi [1 ]
Zhu, Sha [1 ,4 ]
Zhang, Ke [1 ]
Sun, Wenzhao [1 ,5 ,6 ]
Huang, Chaoran [3 ]
Yuan, Yixuan [1 ,3 ]
Wang, Cheng [1 ]
机构
[1] Univ Hong Kong, Dept Elect Engn, State Key Lab Terahertz & Millime, Kowloon, Peoples R China
[2] Univ Oxford, Dept Engn Sci, Oxford, England
[3] Chinese Univ Hong Kong, Dept Elect Engn, Shatin, Peoples R China
[4] Coll Microelect, Fac Informat Technol, Beijing, Peoples R China
[5] Univ Technol, Beijing, Peoples R China
[6] Univ Hong Kong Dongguan, Dongguan, Peoples R China
[7] Univ Hong Kong, Ctr Informat & Commun Technol, Shenzhen Res Inst, Shenzhen, Peoples R China
基金
中国国家自然科学基金;
关键词
CHIP; TECHNOLOGY; MODULATION; GENERATION;
D O I
10.1038/s41586-024-07078-9
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Integrated microwave photonics (MWP) is an intriguing technology for the generation, transmission and manipulation of microwave signals in chip-scale optical systems(1,2). In particular, ultrafast processing of analogue signals in the optical domain with high fidelity and low latency could enable a variety of applications such as MWP filters(3-5), microwave signal processing(6-9) and image recognition(10,11). An ideal integrated MWP processing platform should have both an efficient and high-speed electro-optic modulation block to faithfully perform microwave-optic conversion at low power and also a low-loss functional photonic network to implement various signal-processing tasks. Moreover, large-scale, low-cost manufacturability is required to monolithically integrate the two building blocks on the same chip. Here we demonstrate such an integrated MWP processing engine based on a 4 inch wafer-scale thin-film lithium niobate platform. It can perform multipurpose tasks with processing bandwidths of up to 67 GHz at complementary metal-oxide-semiconductor (CMOS)-compatible voltages. We achieve ultrafast analogue computation, namely temporal integration and differentiation, at sampling rates of up to 256 giga samples per second, and deploy these functions to showcase three proof-of-concept applications: solving ordinary differential equations, generating ultra-wideband signals and detecting edges in images. We further leverage the image edge detector to realize a photonic-assisted image segmentation model that can effectively outline the boundaries of melanoma lesion in medical diagnostic images. Our ultrafast lithium niobate MWP engine could provide compact, low-latency and cost-effective solutions for future wireless communications, high-resolution radar and photonic artificial intelligence.
引用
收藏
页码:80 / +
页数:20
相关论文
共 67 条
[1]   Subvolt electro-optical modulator on thin -film lithium niobate and silicon nitride hybrid platform [J].
Ahmed, Abu Naim R. ;
Nelan, Sean ;
Shi, Shouyuan ;
Yao, Peng ;
Mercante, Andrew ;
Prather, Dennis W. .
OPTICS LETTERS, 2020, 45 (05) :1112-1115
[2]   Lithium niobate photonics: Unlocking the electromagnetic spectrum [J].
Boes, Andreas ;
Chang, Lin ;
Langrock, Carsten ;
Yu, Mengjie ;
Zhang, Mian ;
Lin, Qiang ;
Fejer, Martin ;
Bowers, John ;
Mitchell, Arnan .
SCIENCE, 2023, 379 (6627)
[3]   Microwave photonics combines two worlds [J].
Capmany, Jose ;
Novak, Dalma .
NATURE PHOTONICS, 2007, 1 (06) :319-330
[4]   Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation [J].
Chen, Liang-Chieh ;
Zhu, Yukun ;
Papandreou, George ;
Schroff, Florian ;
Adam, Hartwig .
COMPUTER VISION - ECCV 2018, PT VII, 2018, 11211 :833-851
[5]  
Codella NCF, 2018, I S BIOMED IMAGING, P168, DOI 10.1109/ISBI.2018.8363547
[6]   Compact, flexible and versatile photonic differentiator using silicon Mach-Zehnder interferometers [J].
Dong, Jianji ;
Zheng, Aoling ;
Gao, Dingshan ;
Lei, Lei ;
Huang, Dexiu ;
Zhang, Xinliang .
OPTICS EXPRESS, 2013, 21 (06) :7014-7024
[7]   Extreme electro-optic tuning of Bragg mirrors integrated in lithium niobate nanowaveguides [J].
Escale, Marc Reig ;
Pohl, David ;
Sergeyev, Anton ;
Grange, Rachel .
OPTICS LETTERS, 2018, 43 (07) :1515-1518
[8]  
Fandiño JS, 2017, NAT PHOTONICS, V11, P124, DOI [10.1038/NPHOTON.2016.233, 10.1038/nphoton.2016.233]
[9]   Parallel convolutional processing using an integrated photonic tensor core [J].
Feldmann, J. ;
Youngblood, N. ;
Karpov, M. ;
Gehring, H. ;
Li, X. ;
Stappers, M. ;
Le Gallo, M. ;
Fu, X. ;
Lukashchuk, A. ;
Raja, A. S. ;
Liu, J. ;
Wright, C. D. ;
Sebastian, A. ;
Kippenberg, T. J. ;
Pernice, W. H. P. ;
Bhaskaran, H. .
NATURE, 2021, 589 (7840) :52-+
[10]  
Feng H., 2024, Zenodo, DOI [10.5281/zenodo.10464317, DOI 10.5281/ZENODO.10464317]