A geometric approach to inequalities for the Hilbert-Schmidt norm

被引:0
作者
Zamani, Ali [1 ]
机构
[1] Damghan Univ, Sch Math & Comp Sci, POB 36715-364, Damghan, Iran
关键词
Hilbert-Schmidt norm; Operator inequalities; Angle;
D O I
10.2298/FIL2330435Z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show that if X and Y are two non-zero Hilbert-Schmidt operators, then for any lambda >= 0, cos(2) Theta(X,Y) <= 1/1 + lambda root cos Theta(vertical bar X*vertical bar,vertical bar Y*vertical bar) root cos Theta(vertical bar X*vertical bar,vertical bar Y*vertical bar) vertical bar < X, Y >vertical bar/parallel to X parallel to(2)parallel to Y parallel to(2) + lambda/1 + lambda cos Theta(vertical bar X*vertical bar,vertical bar Y*vertical bar) cos Theta(vertical bar X vertical bar,vertical bar Y vertical bar) <= cos Theta(vertical bar X*vertical bar,vertical bar Y*vertical bar) cos Theta(vertical bar X vertical bar,vertical bar Y vertical bar). Here Theta(A,B) denotes the angle between non-zero Hilbert-Schmidt operators A and B. This enables us to present some inequalities for the Hilbert-Schmidt norm. In particular, we prove that parallel to X parallel to(2)parallel to Y parallel to(2) <= root root 2 + 1/2 parallel to vertical bar X vertical bar + vertical bar Y vertical bar parallel to(2).
引用
收藏
页码:10435 / 10444
页数:10
相关论文
共 12 条