Deep Learning-Based Versus Iterative Image Reconstruction for Unenhanced Brain CT: A Quantitative Comparison of Image Quality

被引:6
作者
Cozzi, Andrea [1 ]
Ce, Maurizio [2 ]
De Padova, Giuseppe [2 ]
Libri, Dario [2 ]
Caldarelli, Nazarena [2 ]
Zucconi, Fabio [3 ]
Oliva, Giancarlo [4 ]
Cellina, Michaela [4 ]
机构
[1] Imaging Inst Southern Switzerland IIMSI, Serv Radiol, Ente Osped Cantonale EOC, Via Tesserete 46, CH-6900 Lugano, Switzerland
[2] Univ Milan, Postgrad Sch Radiodiagnost, Via Festa Perdono 7, I-20122 Milan, Italy
[3] ASST Fatebenefratelli Sacco, Fatebenefratelli Hosp, Dept Radioprotect, Piazza Principessa Clotilde 3, I-20121 Milan, Italy
[4] ASST Fatebenefratelli Sacco, Fatebenefratelli Hosp, Radiol Dept, Piazza Principessa Clotilde 3, I-20121 Milan, Italy
关键词
brain computed tomography; iterative reconstruction algorithms; deep learning-based reconstruction algorithms; image quality; image noise;
D O I
10.3390/tomography9050130
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
This exploratory retrospective study aims to quantitatively compare the image quality of unenhanced brain computed tomography (CT) reconstructed with an iterative (AIDR-3D) and a deep learning-based (AiCE) reconstruction algorithm. After a preliminary phantom study, AIDR-3D and AiCE reconstructions (0.5 mm thickness) of 100 consecutive brain CTs acquired in the emergency setting on the same 320-detector row CT scanner were retrospectively analyzed, calculating image noise reduction attributable to the AiCE algorithm, artifact indexes in the posterior cranial fossa, and contrast-to-noise ratios (CNRs) at the cortical and thalamic levels. In the phantom study, the spatial resolution of the two datasets proved to be comparable; conversely, AIDR-3D reconstructions showed a broader noise pattern. In the human study, median image noise was lower with AiCE compared to AIDR-3D (4.7 vs. 5.3, p < 0.001, median 19.6% noise reduction), whereas AIDR-3D yielded a lower artifact index than AiCE (7.5 vs. 8.4, p < 0.001). AiCE also showed higher median CNRs at the cortical (2.5 vs. 1.8, p < 0.001) and thalamic levels (2.8 vs. 1.7, p < 0.001). These results highlight how image quality improvements granted by deep learning-based (AiCE) and iterative (AIDR-3D) image reconstruction algorithms vary according to different brain areas.
引用
收藏
页码:1629 / 1637
页数:9
相关论文
共 22 条
[1]   Third-generation iterative reconstruction on a dual-source, high-pitch, low-dose chest CT protocol with tin filter for spectral shaping at 100 kV: a study on a small series of COVID-19 patients [J].
Agostini, Andrea ;
Borgheresi, Alessandra ;
Carotti, Marina ;
Ottaviani, Letizia ;
Badaloni, Myriam ;
Floridi, Chiara ;
Giovagnoni, Andrea .
RADIOLOGIA MEDICA, 2021, 126 (03) :388-398
[2]   Deep learning reconstruction improves image quality of abdominal ultra-high-resolution CT [J].
Akagi, Motonori ;
Nakamura, Yuko ;
Higaki, Toru ;
Narita, Keigo ;
Honda, Yukiko ;
Zhou, Jian ;
Yu, Zhou ;
Akino, Naruomi ;
Awai, Kazuo .
EUROPEAN RADIOLOGY, 2019, 29 (11) :6163-6171
[3]   Deep learning versus iterative image reconstruction algorithm for head CT in trauma [J].
Alagic, Zlatan ;
Cardenas, Jacqueline Diaz ;
Halldorsson, Kolbeinn ;
Grozman, Vitali ;
Wallgren, Stig ;
Suzuki, Chikako ;
Helmenkamp, Johan ;
Koskinen, Seppo K. .
EMERGENCY RADIOLOGY, 2022, 29 (02) :339-352
[4]   Ultra-High-Resolution CT of the Head and Neck with Deep Learning Reconstruction-Assessment of Image Quality and Radiation Exposure and Intraindividual Comparison with Normal-Resolution CT [J].
Altmann, Sebastian ;
Mercado, Mario A. Abello A. ;
Ucar, Felix A. ;
Kronfeld, Andrea ;
Al-Nawas, Bilal ;
Mukhopadhyay, Anirban ;
Booz, Christian ;
Brockmann, Marc A. ;
Othman, Ahmed E. .
DIAGNOSTICS, 2023, 13 (09)
[5]   Artifacts in CT: Recognition and avoidance [J].
Barrett, JF ;
Keat, N .
RADIOGRAPHICS, 2004, 24 (06) :1679-1691
[6]   AI applications to medical images: From machine learning to deep learning [J].
Castiglioni, Isabella ;
Rundo, Leonardo ;
Codari, Marina ;
Leo, Giovanni Di ;
Salvatore, Christian ;
Interlenghi, Matteo ;
Gallivanone, Francesca ;
Cozzi, Andrea ;
D'Amico, Natascha Claudia ;
Sardanelli, Francesco .
PHYSICA MEDICA-EUROPEAN JOURNAL OF MEDICAL PHYSICS, 2021, 83 :9-24
[7]   The effects of the skull on CT imaging of the brain: a skull and brain phantom study [J].
Cauley, Keith A. ;
Yorks, Patrick J. ;
Flora, Sarah ;
Fielden, Samuel W. .
BRITISH JOURNAL OF RADIOLOGY, 2021, 94 (1119)
[8]   Computed Tomography Urography: State of the Art and Beyond [J].
Cellina, Michaela ;
Ce, Maurizio ;
Rossini, Nicolo' ;
Cacioppa, Laura Maria ;
Ascenti, Velio ;
Carrafiello, Gianpaolo ;
Floridi, Chiara .
TOMOGRAPHY, 2023, 9 (03) :909-930
[9]   Overuse of computed tomography for minor head injury in young patients: an analysis of promoting factors [J].
Cellina, Michaela ;
Panzeri, Marta ;
Floridi, Chiara ;
Martinenghi, Carlo Maria Andrea ;
Clesceri, Giulio ;
Oliva, Giancarlo .
RADIOLOGIA MEDICA, 2018, 123 (07) :507-514
[10]   Estimating Effective Dose for CT Using Dose-Length Product Compared With Using Organ Doses: Consequences of Adopting International Commission on Radiological Protection Publication 103 or Dual-Energy Scanning [J].
Christner, Jodie A. ;
Kofler, James M. ;
McCollough, Cynthia H. .
AMERICAN JOURNAL OF ROENTGENOLOGY, 2010, 194 (04) :881-889