Adaptive POD-DEIM correction for Turing pattern approximation in reaction-diffusion PDE systems

被引:3
作者
Alla, Alessandro [1 ]
Monti, Angela [2 ]
Sgura, Ivonne [2 ]
机构
[1] Univ Ca Foscari Venezia, Dipartimento Sci Mol & Nanosistemi, Venice, Italy
[2] Univ Salento, Dipartimento Matemat & Fis E De Giorgi, Lecce, Italy
关键词
reaction-diffusion PDEs; Turing patterns; model order reduction; proper orthogonal decomposition; adaptivity; discrete empirical interpolation method; EMPIRICAL INTERPOLATION METHOD; NONLINEAR MODEL-REDUCTION; IMPLICIT EXPLICIT METHODS; SPATIOTEMPORAL ORGANIZATION; MATHEMATICAL-MODEL; ORDER REDUCTION; ELECTRODEPOSITION; STABILIZATION; SELECTION; DYNAMICS;
D O I
10.1515/jnma-2022-0025
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We investigate a suitable application of Model Order Reduction (MOR) techniques for the numerical approximation of Turing patterns, that are stationary solutions of reaction-diffusion PDE (RD-PDE) systems. We show that solutions of surrogate models built by classical Proper Orthogonal Decomposition (POD) exhibit an unstable error behaviour over the dimension of the reduced space. To overcome this drawback, first of all, we propose a POD-DEIM technique with a correction term that includes missing information in the reduced models. To improve the computational efficiency, we propose an adaptive version of this algorithm in time that accounts for the peculiar dynamics of the RD-PDE in presence of Turing instability. We show the effectiveness of the proposed methods in terms of accuracy and computational cost for a selection of RD systems, i.e., FitzHugh-Nagumo, Schnakenberg and the morphochemical DIB models, with increasing degree of nonlinearity and more structured patterns.
引用
收藏
页码:205 / 229
页数:25
相关论文
共 60 条
[1]   A model of cerebral cortex formation during fetal development using reaction-diffusion-convection equations with Turing space parameters [J].
Alexander Garzon-Alvarado, Diego ;
Ramirez Martinez, Angelica Maria ;
Linero Segrera, Dorian Luis .
COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2011, 104 (03) :489-497
[2]  
Alla A., 2013, IFAC Proc., V46, P245
[3]   Randomized model order reduction [J].
Alla, Alessandro ;
Kutz, J. Nathan .
ADVANCES IN COMPUTATIONAL MATHEMATICS, 2019, 45 (03) :1251-1271
[4]   Stabilization of projection-based reduced-order models [J].
Amsallem, David ;
Farhat, Charbel .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2012, 91 (04) :358-377
[5]   IMPLICIT EXPLICIT METHODS FOR TIME-DEPENDENT PARTIAL-DIFFERENTIAL EQUATIONS [J].
ASCHER, UM ;
RUUTH, SJ ;
WETTON, BTR .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1995, 32 (03) :797-823
[6]   GRADIENT DESCENT AND FAST ARTIFICIAL TIME INTEGRATION [J].
Ascher, Uri M. ;
van den Doel, Kees ;
Huang, Hui ;
Svaiter, Benar F. .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2009, 43 (04) :689-708
[7]   Supremizer stabilization of POD-Galerkin approximation of parametrized steady incompressible Navier-Stokes equations [J].
Ballarin, Francesco ;
Manzoni, Andrea ;
Quarteroni, Alfio ;
Rozza, Gianluigi .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2015, 102 (05) :1136-1161
[8]   An 'empirical interpolation' method: application to efficient reduced-basis discretization of partial differential equations [J].
Barrault, M ;
Maday, Y ;
Nguyen, NC ;
Patera, AT .
COMPTES RENDUS MATHEMATIQUE, 2004, 339 (09) :667-672
[9]   The surface finite element method for pattern formation on evolving biological surfaces [J].
Barreira, R. ;
Elliott, C. M. ;
Madzvamuse, A. .
JOURNAL OF MATHEMATICAL BIOLOGY, 2011, 63 (06) :1095-1119
[10]  
Benner P, 2015, APPL COMPUT MATH-BAK, V14, P3