Indolo[2,3-b]quinoxaline as a Low Reduction Potential and High Stability Anolyte Scaffold for Nonaqueous Redox Flow Batteries

被引:16
作者
Zhang, Wenhao [1 ,2 ,3 ]
Walser-Kuntz, Ryan [3 ,4 ]
Tracy, Jacob S. [1 ,2 ,3 ]
Schramm, Tim K. [2 ,5 ]
Shee, James [2 ]
Head-Gordon, Martin [1 ,2 ]
Chen, Gan [1 ]
Helms, Brett A. [1 ]
Sanford, Melanie S. [3 ,4 ]
Toste, F. Dean [1 ,2 ,3 ]
机构
[1] Lawrence Berkeley Natl Lab, Chem Sci Div, Berkeley, CA 94720 USA
[2] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA
[3] Joint Ctr Energy Storage Res JCESR, Argonne, IL 60439 USA
[4] Univ Michigan, Dept Chem, Ann Arbor, MI 48109 USA
[5] Rhein Westfal TH Aachen, Dept Chem, D-52074 Aachen, Germany
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
PHENAZINE-BASED ANOLYTE; ENERGY-STORAGE; ELECTROLYTES; DESIGN;
D O I
10.1021/jacs.3c05210
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Redox flow batteries(RFBs) are a promising stationaryenergy storagetechnology for leveling power supply from intermittent renewable energysources with demand. A central objective for the development of practical,scalable RFBs is to identify affordable and high-performance redox-activemolecules as storage materials. Herein, we report the design, synthesis,and evaluation of a new organic scaffold, indolo[2,3-b]quinoxaline, for highly stable, low-reduction potential, and high-solubilityanolytes for nonaqueous redox flow batteries (NARFBs). The mixtureof 2- and 3-(tert-butyl)-6-(2-methoxyethyl)-6H-indolo[2,3-b]quinoxaline exhibits a lowreduction potential (-2.01 V vs Fc/Fc(+)), high solubility(>2.7 M in acetonitrile), and remarkable stability (99.86% capacityretention over 49.5 h (202 cycles) of H-cell cycling). This anolytewas paired with N-(2-(2-methoxyethoxy)-ethyl)phenothiazine(MEEPT) to achieve a 2.3 V all-organic NARFB exhibiting 95.8% capacityretention over 75.1 h (120 cycles) of cycling.
引用
收藏
页码:18877 / 18887
页数:11
相关论文
共 64 条
[1]   Systematic Designs of Dicationic Heteroarylpyridiniums as Negolytes for Nonaqueous Redox Flow Batteries [J].
Ahn, Seongmo ;
Jang, Jin Hyeok ;
Kang, Jungtaek ;
Na, Moony ;
Seo, Jia ;
Singh, Vikram ;
Joo, Jung Min ;
Byon, Hye Ryung .
ACS ENERGY LETTERS, 2021, 6 (09) :3390-3397
[2]   Redox flow batteries for the storage of renewable energy: A review [J].
Alotto, Piergiorgio ;
Guarnieri, Massimo ;
Moro, Federico .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2014, 29 :325-335
[3]  
[Anonymous], 2010, The Role of Energy Storage with Renewable Electricity Generation
[4]  
NREL NREL/TP-6A2- 47187
[5]   Stability of molecular radicals in organic non-aqueous redox flow batteries: A mini review [J].
Armstrong, Craig G. ;
Toghill, Kathryn E. .
ELECTROCHEMISTRY COMMUNICATIONS, 2018, 91 :19-24
[6]   Dual function organic active materials for nonaqueous redox flow batteries [J].
Attanayake, N. Harsha ;
Liang, Zhiming ;
Wang, Yilin ;
Kaur, Aman Preet ;
Parkin, Sean R. ;
Mobley, Justin K. ;
Ewoldt, Randy H. ;
Landon, James ;
Odom, Susan A. .
MATERIALS ADVANCES, 2021, 2 (04) :1390-1401
[7]   An All-Organic Non-aqueous Lithium-Ion Redox Flow Battery [J].
Brushett, Fikile R. ;
Vaughey, John T. ;
Jansen, Andrew N. .
ADVANCED ENERGY MATERIALS, 2012, 2 (11) :1390-1396
[8]   A bipolar verdazyl radical for a symmetric all-organic redox flow-type battery [J].
Charlton, Grant D. ;
Barbon, Stephanie M. ;
Gilroy, Joe B. ;
Dyker, C. Adam .
JOURNAL OF ENERGY CHEMISTRY, 2019, 34 :52-56
[9]   Pathways to low-cost electrochemical energy storage: a comparison of aqueous and nonaqueous flow batteries [J].
Darling, Robert M. ;
Gallagher, Kevin G. ;
Kowalski, Jeffrey A. ;
Ha, Seungbum ;
Brushett, Fikile R. .
ENERGY & ENVIRONMENTAL SCIENCE, 2014, 7 (11) :3459-3477
[10]   Imide-Based Multielectron Anolytes as High-Performance Materials in Nonaqueous Redox Flow Batteries [J].
Daub, Nicolas ;
Janssen, Rene A. J. ;
Hendriks, Koen H. .
ACS APPLIED ENERGY MATERIALS, 2021, 4 (09) :9248-9257