The six-vertex model on random planar maps revisited

被引:1
作者
Price, Andrew Elvey [1 ]
Zinn-Justin, Paul [2 ]
机构
[1] Univ Bordeaux, Lab Bordelais Rech Informat, UMR 5800, 351 Cours Liberat, F-33405 Talence, France
[2] Univ Melbourne, Sch Math & Stat, Melbourne, Vic 3010, Australia
基金
欧洲研究理事会;
关键词
Planar maps; Six vertex model; Eulerian orientations; Matrix integrals; Elliptic theta functions; Modular forms;
D O I
10.1016/j.jcta.2023.105739
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We address the six vertex model on a random lattice, which in combinatorial terms corresponds to the enumeration of weighted 4-valent planar maps equipped with an Eulerian orientation. This problem was exactly, albeit non-rigorously solved by Ivan Kostov in 2000 using matrix integral tech-niques. We convert Kostov's work to a combinatorial argu-ment involving functional equations coming from recursive decompositions of the maps, which we solve rigorously us-ing complex analysis. We then investigate modular properties of the solution, which lead to simplifications in certain special cases. In particular, in two special cases of combinatorial in-terest we rederive the formulae discovered by Bousquet-Melou and the first author.(c) 2023 Elsevier Inc. All rights reserved.
引用
收藏
页数:32
相关论文
共 50 条
[31]   Exact results for the six-vertex model with domain wall boundary conditions and a partially reflecting end [J].
Linnea Hietala .
Letters in Mathematical Physics, 2022, 112
[32]   GUE corners process in boundary-weighed six-vertex models [J].
Dimitrov, Evgeni ;
Rychnovsky, Mark .
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2022, 58 (01) :188-219
[33]   The monodromy matrix in the F-basis for arbitrary six-vertex models [J].
Martins, M. J. ;
Zuparic, M. .
NUCLEAR PHYSICS B, 2011, 851 (03) :565-619
[34]   Refined Cauchy/Littlewood identities and six-vertex model partition functions: III. Deformed bosons [J].
Wheeler, Michael ;
Zinn-Justin, Paul .
ADVANCES IN MATHEMATICS, 2016, 299 :543-600
[35]   The Six and Eight-Vertex Models Revisited [J].
R. J. Baxter .
Journal of Statistical Physics, 2004, 116 :43-66
[36]   The six and eight-vertex models revisited [J].
Baxter, RJ .
JOURNAL OF STATISTICAL PHYSICS, 2004, 116 (1-4) :43-66
[37]   Refined Cauchy/Littlewood identities and six-vertex model partition functions: II. Proofs and new conjectures [J].
D. Betea ;
M. Wheeler ;
P. Zinn-Justin .
Journal of Algebraic Combinatorics, 2015, 42 :555-603
[38]   Refined Cauchy/Littlewood identities and six-vertex model partition functions: II. Proofs and new conjectures [J].
Betea, D. ;
Wheeler, M. ;
Zinn-Justin, P. .
JOURNAL OF ALGEBRAIC COMBINATORICS, 2015, 42 (02) :555-603
[39]   THE ORDER DIMENSION OF PLANAR MAPS REVISITED [J].
Felsner, Stefan .
SIAM JOURNAL ON DISCRETE MATHEMATICS, 2014, 28 (03) :1093-1101
[40]   EXACT SOLUTION OF THE SIX-VERTEX MODEL WITH DOMAIN WALL BOUNDARY CONDITIONS: CRITICAL LINE BETWEEN DISORDERED AND ANTIFERROELECTRIC PHASES [J].
Bleher, Pavel ;
Bothner, Thomas .
RANDOM MATRICES-THEORY AND APPLICATIONS, 2012, 1 (04)