The six-vertex model on random planar maps revisited

被引:1
|
作者
Price, Andrew Elvey [1 ]
Zinn-Justin, Paul [2 ]
机构
[1] Univ Bordeaux, Lab Bordelais Rech Informat, UMR 5800, 351 Cours Liberat, F-33405 Talence, France
[2] Univ Melbourne, Sch Math & Stat, Melbourne, Vic 3010, Australia
基金
欧洲研究理事会;
关键词
Planar maps; Six vertex model; Eulerian orientations; Matrix integrals; Elliptic theta functions; Modular forms;
D O I
10.1016/j.jcta.2023.105739
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We address the six vertex model on a random lattice, which in combinatorial terms corresponds to the enumeration of weighted 4-valent planar maps equipped with an Eulerian orientation. This problem was exactly, albeit non-rigorously solved by Ivan Kostov in 2000 using matrix integral tech-niques. We convert Kostov's work to a combinatorial argu-ment involving functional equations coming from recursive decompositions of the maps, which we solve rigorously us-ing complex analysis. We then investigate modular properties of the solution, which lead to simplifications in certain special cases. In particular, in two special cases of combinatorial in-terest we rederive the formulae discovered by Bousquet-Melou and the first author.(c) 2023 Elsevier Inc. All rights reserved.
引用
收藏
页数:32
相关论文
共 50 条
  • [1] The six-vertex model on random lattices
    Zinn-Justin, P
    EUROPHYSICS LETTERS, 2000, 50 (01): : 15 - 21
  • [2] SIX-VERTEX MODEL AND RANDOM MATRIX DISTRIBUTIONS
    Gorin, Vadim
    Nicoletti, Matthew
    BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 2025, 62 (02) : 175 - 234
  • [3] Exact solution of the six-vertex model on a random lattice
    Kostov, IK
    NUCLEAR PHYSICS B, 2000, 575 (03) : 513 - 534
  • [4] Convergence of the Stochastic Six-Vertex Model to the ASEPStochastic Six-Vertex Model and ASEP
    Amol Aggarwal
    Mathematical Physics, Analysis and Geometry, 2017, 20
  • [5] STOCHASTIC SIX-VERTEX MODEL
    Borodin, Alexei
    Corwin, Ivan
    Gorin, Vadim
    DUKE MATHEMATICAL JOURNAL, 2016, 165 (03) : 563 - 624
  • [6] On Delocalization in the Six-Vertex Model
    Lis, Marcin
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2021, 383 (02) : 1181 - 1205
  • [7] On Delocalization in the Six-Vertex Model
    Marcin Lis
    Communications in Mathematical Physics, 2021, 383 : 1181 - 1205
  • [8] Six-vertex model with an frustrated impurity
    Hara, Y
    Hatano, N
    Suzuki, M
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1997, 66 (10) : 3048 - 3052
  • [9] Boundary polarization in the six-vertex model
    Bogoliubov, NM
    Kitaev, AV
    Zvonarev, MB
    PHYSICAL REVIEW E, 2002, 65 (02):
  • [10] Symmetry relations for the six-vertex model
    Watson, GI
    JOURNAL OF STATISTICAL PHYSICS, 1999, 94 (5-6) : 1045 - 1054