Multiomic Analysis and CRISPR Perturbation Screens Identify Endothelial Cell Programs and Novel Therapeutic Targets for Coronary Artery Disease

被引:5
作者
Gupta, Rajat M. [1 ,2 ,3 ,4 ,5 ]
Schnitzler, Gavin R. [1 ,2 ,3 ]
Fang, Shi [1 ,2 ,3 ]
Lee-Kim, Vivian S. [1 ,2 ,3 ]
Barry, Aurelie [1 ,2 ,3 ]
机构
[1] Brigham & Womens Hosp, Dept Med, Div Genet, Boston, MA USA
[2] Brigham & Womens Hosp, Dept Med, Div Cardiol, Boston, MA USA
[3] Broad Inst & Harvard, Cambridge, MA USA
[4] Brigham & Womens Hosp, Div Genet, 77 Ave Louis Pasteur,Room 160B, Boston, MA 02115 USA
[5] Brigham & Womens Hosp, Div Cardiol, 77 Ave Louis Pasteur,Room 160B, Boston, MA 02115 USA
关键词
atherosclerosis; coronary artery disease; endothelial cell; genetics; genomic; RISK; METAANALYSIS; ASSOCIATION; DYSFUNCTION; DISCOVERY; VARIANTS;
D O I
10.1161/ATVBAHA.123.318328
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Endothelial cells (EC) are an important mediator of atherosclerosis and vascular disease. Their exposure to atherogenic risk factors such as hypertension and serum cholesterol leads to endothelial dysfunction and many disease-associated processes. Identifying which of these multiple EC functions is causally related to disease risk has been challenging. There is evidence from in vivo models and human sequencing studies that dysregulation of nitric oxide production directly affects risk of coronary artery disease. Human genetics can help prioritize the other EC functions with causal relationships because germline mutations are acquired at birth and serve as a randomized test of which pathways affect disease risk. Though several coronary artery disease risk variants have been linked to EC function, this process has been slow and laborious. Unbiased analyses of EC dysfunction using multiomic approaches promise to identify the causal genetic mechanisms responsible for vascular disease. Here, we review the data from genomic, epigenomic, and transcriptomic studies that prioritize EC-specific causal pathways. New methods that CRISPR (clustered regularly interspaced short palindromic repeats) perturbation technology with genomic, epigenomic, and transcriptomic analysis promise to speed up the characterization of disease-associated genetic variation. We summarize several recent studies in ECs which use high-throughput genetic perturbation to identify disease-relevant pathways and novel mechanisms of disease. These genetically validated pathways can accelerate the identification of drug targets for the prevention and treatment of atherosclerosis.
引用
收藏
页码:600 / 608
页数:9
相关论文
共 60 条
[31]   Adventitial fibroblast-derived vascular endothelial growth factor promotes vasa vasorum-associated neointima formation and macrophage recruitment [J].
Li, Xiao-Dong ;
Hong, Mo-Na ;
Chen, Jing ;
Lu, Yuan-Yuan ;
Ye, O-Qing ;
Ma, Yu ;
Zhu, Ding-Liang ;
Gao, Ping-Jin .
CARDIOVASCULAR RESEARCH, 2020, 116 (03) :708-720
[32]   Inflammation in Atherosclerosis [J].
Libby, Peter .
ARTERIOSCLEROSIS THROMBOSIS AND VASCULAR BIOLOGY, 2012, 32 (09) :2045-2051
[33]   Abundant associations with gene expression complicate GWAS follow-up [J].
Liu, Boxiang ;
Gloudemans, Michael J. ;
Rao, Abhiram S. ;
Ingelsson, Erik ;
Montgomery, Stephen B. .
NATURE GENETICS, 2019, 51 (05) :768-+
[34]   Genome-wide enhancer maps link risk variants to disease genes [J].
Nasser, Joseph ;
Bergman, Drew T. ;
Fulco, Charles P. ;
Guckelberger, Philine ;
Doughty, Benjamin R. ;
Patwardhan, Tejal A. ;
Jones, Thouis R. ;
Nguyen, Tung H. ;
Ulirsch, Jacob C. ;
Lekschas, Fritz ;
Mualim, Kristy ;
Natri, Heini M. ;
Weeks, Elle M. ;
Munson, Glen ;
Kane, Michael ;
Kang, Helen Y. ;
Cui, Ang ;
Ray, John P. ;
Eisenhaure, Thomas M. ;
Collins, Ryan L. ;
Dey, Kushal ;
Pfister, Hanspeter ;
Price, Alkes L. ;
Epstein, Charles B. ;
Kundaje, Anshul ;
Xavier, Ramnik J. ;
Daly, Mark J. ;
Huang, Hailiang ;
Finucane, Hilary K. ;
Hacohen, Nir ;
Lander, Eric S. ;
Engreitz, Jesse M. .
NATURE, 2021, 593 (7858) :238-+
[35]   Single-cell eQTL models reveal dynamic T cell state dependence of disease loci [J].
Nathan, Aparna ;
Asgari, Samira ;
Ishigaki, Kazuyoshi ;
Valencia, Cristian ;
Amariuta, Tiffany ;
Luo, Yang ;
Beynor, Jessica I. ;
Baglaenko, Yuriy ;
Suliman, Sara ;
Price, Alkes L. ;
Lecca, Leonid ;
Murray, Megan B. ;
Moody, D. Branch ;
Raychaudhuri, Soumya .
NATURE, 2022, 606 (7912) :120-+
[36]  
Ndungu A., BIORXIV, DOI [10.1101/773630, DOI 10.1101/773630]
[37]   The support of human genetic evidence for approved drug indications [J].
Nelson, Matthew R. ;
Tipney, Hannah ;
Painter, Jeffery L. ;
Shen, Judong ;
Nicoletti, Paola ;
Shen, Yufeng ;
Floratos, Aris ;
Sham, Pak Chung ;
Li, Mulin Jun ;
Wang, Junwen ;
Cardon, Lon R. ;
Whittaker, John C. ;
Sanseau, Philippe .
NATURE GENETICS, 2015, 47 (08) :856-+
[38]   Multiple cell types contribute to the atherosclerotic lesion fibrous cap by PDGFRβ and bioenergetic mechanisms [J].
Newman, Alexandra A. C. ;
Serbulea, Vlad ;
Baylis, Richard A. ;
Shankman, Laura S. ;
Bradley, Xenia ;
Alencar, Gabriel F. ;
Owsiany, Katherine ;
Deaton, Rebecca A. ;
Karnewar, Santosh ;
Shamsuzzaman, Sohel ;
Salamon, Anita ;
Reddy, Mahima S. ;
Guo, Liang ;
Finn, Aloke ;
Virmani, Renu ;
Cherepanova, Olga A. ;
Owens, Gary K. .
NATURE METABOLISM, 2021, 3 (02) :166-+
[39]   Effect of torcetrapib on the progression of coronary atherosclerosis [J].
Nissen, Steven E. ;
Tardif, Jean-Claude ;
Nicholls, Stephen J. ;
Revkin, James H. ;
Shear, Charles L. ;
Duggan, William T. ;
Ruzyllo, Witold ;
Bachinsky, William B. ;
Lasala, Gregory P. ;
Tuzcu, E. Murat .
NEW ENGLAND JOURNAL OF MEDICINE, 2007, 356 (13) :1304-1316
[40]   Exploring genetic interaction manifolds constructed from rich single-cell phenotypes [J].
Norman, Thomas M. ;
Horlbeck, Max A. ;
Replogle, Joseph M. ;
Ge, Alex Y. ;
Xu, Albert ;
Jost, Marco ;
Gilbert, Luke A. ;
Weissman, Jonathan S. .
SCIENCE, 2019, 365 (6455) :786-+