High-Resolution 3D Magnetic Resonance Fingerprinting With a Graph Convolutional Network

被引:5
作者
Cheng, Feng [1 ]
Liu, Yilin [1 ]
Chen, Yong [2 ]
Yap, Pew-Thian [3 ,4 ]
机构
[1] Univ N Carolina, Dept Comp Sci, Chapel Hill, NC 27599 USA
[2] Case Western Reserve Univ, Dept Radiol, Cleveland, OH 44106 USA
[3] Univ N Carolina, Dept Radiol, Chapel Hill, NC 27599 USA
[4] Univ N Carolina, Biomed Res Imaging Ctr BR, Chapel Hill, NC 27599 USA
基金
美国国家卫生研究院;
关键词
Spirals; Kernel; Three-dimensional displays; Imaging; Magnetic resonance imaging; Convolution; Deep learning; 3D magnetic resonance fingerprinting (MRF); graph convolution; GRAPPA; k-space interpolation; T-1;
D O I
10.1109/TMI.2022.3216527
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Magnetic resonance fingerprinting (MRF) is a novel quantitative imaging framework for rapid and simultaneous quantification of multiple tissue properties. 3D MRF allows higher through-plane resolution, but the acquisition process is slow when whole-brain coverage is needed. Existing methods for acceleration mainly rely on GRAPPA for k-space interpolation in the partition-encoding direction, limiting the acceleration factor to 2 or 3. In this work, we replace GRAPPA with a deep learning approach for accurate tissue quantification with greater acceleration. Specifically, a graph convolution network (GCN) is developed to cater to the non-Cartesian spiral sampling trajectories typical in MRF acquisition. The GCN maintains high quantification accuracy with up to 6-fold acceleration and allows 1mm isotropic resolution whole-brain 3D MRF data to be acquired in 3min and submillimeter 3D MRF (0.8mm) in 5min, greatly improving the feasibility of MRF in clinical settings.
引用
收藏
页码:674 / 683
页数:10
相关论文
共 30 条
[1]   Scan-specific robust artificial-neural-networks for k-space interpolation (RAKI) reconstruction: Database-free deep learning for fast imaging [J].
Akcakaya, Mehmet ;
Moeller, Steen ;
Weingaertner, Sebastian ;
Ugurbil, Kamil .
MAGNETIC RESONANCE IN MEDICINE, 2019, 81 (01) :439-453
[2]   MR Fingerprinting of Adult Brain Tumors: Initial Experience [J].
Badve, C. ;
Yu, A. ;
Dastmalchian, S. ;
Rogers, M. ;
Ma, D. ;
Jiang, Y. ;
Margevicius, S. ;
Pahwa, S. ;
Lu, Z. ;
Schluchter, M. ;
Sunshine, J. ;
Griswold, M. ;
Sloan, A. ;
Gulani, V. .
AMERICAN JOURNAL OF NEURORADIOLOGY, 2017, 38 (03) :492-499
[3]   High-resolution 3D MR Fingerprinting using parallel imaging and deep learning [J].
Chen, Yong ;
Fang, Zhenghan ;
Hung, Sheng-Che ;
Chang, Wei-Tang ;
Shen, Dinggang ;
Lin, Weili .
NEUROIMAGE, 2020, 206
[4]   Three-dimensional MR Fingerprinting for Quantitative Breast Imaging [J].
Chen, Yong ;
Panda, Ananya ;
Pahwa, Shivani ;
Hamilton, Jesse I. ;
Dastmalchian, Sara ;
McGivney, Debra F. ;
Ma, Dan ;
Batesole, Joshua ;
Seiberlich, Nicole ;
Griswold, Mark A. ;
Plecha, Donna ;
Gulani, Vikas .
RADIOLOGY, 2019, 290 (01) :33-40
[5]  
Cheng Feng, 2020, Med Image Comput Comput Assist Interv, V12262, P158, DOI 10.1007/978-3-030-59713-9_16
[6]   Magnetic resonance multitasking for motion-resolved quantitative cardiovascular imaging [J].
Christodoulou, Anthony G. ;
Shaw, Jaime L. ;
Nguyen, Christopher ;
Yang, Qi ;
Xie, Yibin ;
Wang, Nan ;
Li, Debiao .
NATURE BIOMEDICAL ENGINEERING, 2018, 2 (04) :215-226
[7]   MR fingerprinting Deep RecOnstruction NEtwork (DRONE) [J].
Cohen, Ouri ;
Zhu, Bo ;
Rosen, Matthew S. .
MAGNETIC RESONANCE IN MEDICINE, 2018, 80 (03) :885-894
[8]  
Dongdong Chen, 2020, Medical Image Computing and Computer Assisted Intervention - MICCAI 2020. 23rd International Conference. Proceedings. Lecture Notes in Computer Science (LNCS 12262), P13, DOI 10.1007/978-3-030-59713-9_2
[9]   KIKI-net: cross-domain convolutional neural networks for reconstructing undersampled magnetic resonance images [J].
Eo, Taejoon ;
Jun, Yohan ;
Kim, Taeseong ;
Jang, Jinseong ;
Lee, Ho-Joon ;
Hwang, Dosik .
MAGNETIC RESONANCE IN MEDICINE, 2018, 80 (05) :2188-2201
[10]   Multi-band MR fingerprinting (MRF) ASL imaging using artificial-neural-network trained with high-fidelity experimental data [J].
Fan, Hongli ;
Su, Pan ;
Huang, Judy ;
Liu, Peiying ;
Lu, Hanzhang .
MAGNETIC RESONANCE IN MEDICINE, 2021, 85 (04) :1974-1985