Faber Polynomial Coefficient Estimates for Janowski Type bi-Close-to-Convex and bi-Quasi-Convex Functions

被引:9
作者
Khan, Shahid [1 ]
Altinkaya, Sahsene [2 ]
Xin, Qin [3 ]
Tchier, Fairouz [4 ]
Malik, Sarfraz Nawaz [5 ]
Khan, Nazar [1 ]
机构
[1] Abbottabad Univ Sci & Technol, Dept Math, Abbottabad 22500, Pakistan
[2] Beykent Univ, Fac Arts & Sci, Dept Math, TR-34500 Istanbul, Turkiye
[3] Univ Faroe Isl, Fac Sci & Technol, Vestarabryggja 15, FO-100 Torshavn, Faroe Islands, Denmark
[4] King Saud Univ, Coll Sci, Math Dept, POB 22452, Riyadh 11495, Saudi Arabia
[5] COMSATS Univ Islamabad, Dept Math, Wah Campus, Wah Cantt 47040, Pakistan
来源
SYMMETRY-BASEL | 2023年 / 15卷 / 03期
关键词
analytic functions; univalent functions; bi-univalent functions; Janowski functions; Faber polynomials expansions; UNIVALENT; SUBCLASS; BOUNDS;
D O I
10.3390/sym15030604
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Motivated by the recent work on symmetric analytic functions by using the concept of Faber polynomials, this article introduces and studies two new subclasses of bi-close-to-convex and quasi-close-to-convex functions associated with Janowski functions. By using the Faber polynomial expansion method, it determines the general coefficient bounds for the functions belonging to these classes. It also finds initial coefficients of bi-close-to-convex and bi-quasi-convex functions by using Janowski functions. Some known consequences of the main results are also highlighted.
引用
收藏
页数:13
相关论文
共 40 条