MINIMAL MODEL PROGRAM FOR SEMI-STABLE THREEFOLDS IN MIXED CHARACTERISTIC

被引:7
作者
Takamatsu, Teppei [1 ]
Yoshikawa, Shou [2 ]
机构
[1] Kyoto Univ, Grad Sch Sci, Dept Math, Kyoto 6068502, Japan
[2] Riken Interdisciplinary Theoret & Math Sci ITHEMS, Wako, Saitama 3510198, Japan
关键词
GOOD REDUCTION; K3; SURFACES; SINGULARITIES; EXISTENCE; VARIETIES; FREENESS; THEOREMS; 3-FOLDS;
D O I
10.1090/jag/813
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study the minimal model theory for threefolds in mixed characteristic. As a generalization of a result of Kawamata, we show that the minimal model program (MMP) holds for strictly semi-stable schemes over an excellent Dedekind scheme V of relative dimension two without any assumption on the residue characteristics of V. We also prove that we can run a (KX/V + Delta)-MMP over Z, where pi: X -> Z is a projective birational morphism of Q-factorial quasi-projective V schemes and (X, Delta) is a three-dimensional dlt pair with Exc(pi) subset of [Delta].
引用
收藏
页码:429 / 476
页数:48
相关论文
共 50 条
[1]  
[Anonymous], 2013, Cambridge Tracts in Mathematics, DOI [10.1017/CBO9781139547895, DOI 10.1017/CBO9781139547895]
[2]  
[Anonymous], 1990, Ergebnisse der Mathematik und ihrer Grenzgebiete, DOI DOI 10.1007/978-3-642-51438-8
[3]  
[Anonymous], 1994, J. Algebraic Geom.
[4]   On the direct summand conjecture and its derived variant [J].
Bhatt, Bhargav .
INVENTIONES MATHEMATICAE, 2018, 212 (02) :297-317
[5]  
Bhatt Bhargav, 2020, ARXIV
[6]  
Bhatt Bhargav, 2010, DERIVED DIRECT SUMMA
[7]  
Bhyatt Bhargav, 2020, ARXIV
[8]   Existence of Mori fibre spaces for 3-folds in char p [J].
Birkar, Caucher ;
Waldron, Joe .
ADVANCES IN MATHEMATICS, 2017, 313 :62-101
[9]  
Birkar C, 2016, ANN SCI ECOLE NORM S, V49, P169
[10]   EXISTENCE OF MINIMAL MODELS FOR VARIETIES OF LOG GENERAL TYPE [J].
Birkar, Caucher ;
Cascini, Paolo ;
Hacon, Christopher D. ;
McKernan, James .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2010, 23 (02) :405-468