Forward uncertainty quantification in random differential equation systems with delta-impulsive terms: Theoretical study and applications

被引:6
作者
Bevia, Vicente J. [1 ]
Cortes, Juan C. [1 ]
Villanueva, Rafael J. [1 ]
机构
[1] Univ Politecn Valencia, Inst Univ Matemat Multidisciplinar, Valencia 46022, Spain
关键词
Dirac-delta impulse terms; first probability density function; Liouville-Gibbs equation; random differential equations; random variable transformation technique; POTENTIAL USEFULNESS; LIOUVILLE EQUATION; FORECAST SKILL; PREDICTION; SUBJECT; MODEL;
D O I
10.1002/mma.9226
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This contribution aims at studying a general class of random differential equations with Dirac-delta impulse terms at a finite number of time instants. Our approach directly addresses calculating the so-called first probability density function, from which all the relevant statistical information about the solution, a stochastic process, can be extracted. We combine the Liouville partial differential equation and the random variable transformation method to conduct our study. Finally, all our theoretical findings are illustrated on two stochastic models, widely used in mathematical modeling, for which numerical simulations are carried out.
引用
收藏
页码:7609 / 7629
页数:21
相关论文
共 71 条
  • [1] Agarwal RP., 1993, Uniqueness and nonuniqueness criteria for ordinary differential equations, V6
  • [2] [Anonymous], 1977, Probability Theory
  • [3] Banks H.T., 2012, P 43 ISCIE INT S STO, P134, DOI [10.5687/sss.2012.134, DOI 10.5687/SSS.2012.134]
  • [4] Batchelor GK, 1973, INTRO FLUID DYNAMICS
  • [5] Benedetto JohnJ., 1997, HARMONIC ANAL APPL
  • [6] Bergdorf M. E., 2007, THESIS ETH ZURICH ZU
  • [7] A Lagrangian particle-wavelet method
    Bergdorf, Michael
    Koumoutsakos, Petros
    [J]. MULTISCALE MODELING & SIMULATION, 2006, 5 (03) : 980 - 995
  • [8] Uncertainty quantification analysis of the biological Gompertz model subject to random fluctuations in all its parameters
    Bevia, V
    Burgos, C.
    Cortes, J-C
    Navarro-Quiles, A.
    Villanueva, R-J
    [J]. CHAOS SOLITONS & FRACTALS, 2020, 138
  • [9] Bevia V, 2020, COMPUTATIONAL MATH A, P1, DOI [10.1007/978-981-15-8498-5_1, DOI 10.1007/978-981-15-8498-5_1]
  • [10] Bevia V., 2023, COMMUN NONLINEAR SCI, V119