Transversal Hop Domination in Graphs

被引:2
作者
Bonsocan, Maria Andrea O. [1 ]
Jamil, Ferdinand P. [2 ]
机构
[1] Mindanao State Univ, Iligan Inst Technol, Coll Sci & Math, Dept Math & Stat, Iligan 9200, Philippines
[2] Mindanao State Univ, Premier Res Inst Sci & Math, Iligan Inst Technol, Coll Sci & Math,Dept Math & Stat,Ctr Graph Theory, Iligan 9200, Philippines
来源
EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS | 2023年 / 16卷 / 01期
关键词
Key Words and Phrases; Hop dominating set; transversal hop dominating set; transversal hop domination number; SETS; CORONA; JOIN;
D O I
10.29020/nybg.ejpam.v16i1.4610
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a graph. A set S C V (G) is a hop dominating set of G if for every v E V (G)\S, there exists u E S such that dG(u, v) = 2. The minimum cardinality gamma h(G) of a hop dominating set is the hop domination number of G. Any hop dominating set of G of cardinality gamma h(G) is a gamma h-set of G. A hop dominating set S of G which intersects every gamma h-set of G is a transversal hop dominating set. The minimum cardinality gamma bh(G) of a transversal hop dominating set in G is the transversal hop domination number of G. In this paper, we initiate the study of transversal hop domination. First, we characterize graphs G whose values for gamma bh(G) are either n or n - 1, and we determine the specific values of gamma bh(G) for some specific graphs. Next, we show that for every positive integers a and b with a > 2 and b > 3a, there exists a connected graph G on b vertices such that gamma bh(G) = a. We also show that for every positive integers a and b with 2 < a < b, there exists a connected graph G for which gamma h(G) = a and gamma bh(G) = b. Finally, we investigate the transversal hop dominating sets in the join and corona of two graphs, and determine their corresponding transversal hop domination numbers.
引用
收藏
页码:192 / 206
页数:15
相关论文
共 50 条
[31]   Domination index in graphs [J].
Nair, Kavya. R. ;
Sunitha, M. S. .
ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2024, 17 (10)
[32]   NP-completeness of some generalized hop and step domination parameters in graphs [J].
Asemian, Ghazaleh ;
Rad, Nader Jafari ;
Tehranian, Abolfazl ;
Rasouli, Hamid .
COMMUNICATIONS IN COMBINATORICS AND OPTIMIZATION, 2025, 10 (01) :181-193
[33]   Weakly Connected Hop Domination in Graphs Resulting from Some Binary Operations [J].
Hamja, Jamil J. ;
Aniversario, Imelda S. ;
Merca, Catherine I. .
EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2023, 16 (01) :454-464
[34]   Outer-Convex Hop Domination in Graphs Under Some Binary Operations [J].
Isahac, Al-Amin Y. ;
Hassan, Javier A. ;
Laja, Ladznar S. ;
Copel, Hounam B. .
EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2023, 16 (04) :2035-2048
[35]   More on independent transversal domination [J].
Pushpam, P. Roushini Leely ;
Bhanthavi, K. Priya .
DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2024, 16 (07)
[36]   Hop Differentiating Hop Dominating Sets in Graphs [J].
Canoy, Sergio R. ;
Saromines, Chrisley Jade C. .
EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2023, 16 (01) :440-453
[37]   On Connected Partial Domination in Graphs [J].
Cabulao, Jessa Mae C. ;
Isla, Rowena T. .
EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2021, 14 (04) :1490-1506
[38]   ISOLATE SEMITOTAL DOMINATION IN GRAPHS [J].
Aradais, Anuarisa A. ;
Laja, Ladznar S. ;
Aradais, Alkajim A. .
ADVANCES AND APPLICATIONS IN DISCRETE MATHEMATICS, 2022, 32 :55-62
[39]   CONNECTED SUPER DOMINATION IN GRAPHS [J].
Liguarda, Remilou F. ;
Canoy, Sergio R., Jr. .
ADVANCES AND APPLICATIONS IN DISCRETE MATHEMATICS, 2018, 19 (03) :273-288
[40]   Resolving Restrained Domination in Graphs [J].
Monsanto, Gerald B. ;
Rara, Helen M. .
EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2021, 14 (03) :829-841