Gauss maps of harmonic and minimal great circle fibrations

被引:0
|
作者
Fourtzis, Ioannis [1 ]
Markellos, Michael [1 ]
Savas-Halilaj, Andreas [1 ]
机构
[1] Univ Ioannina, Sect Algebra & Geometry, Ioannina 45110, Greece
关键词
Hopf vector fields; Great circle fibration; Gauss maps; Maximum principle; UNIT VECTOR-FIELDS; MEAN-CURVATURE; VOLUME; ENERGY; STABILITY; SPHERES; FLOWS; S-3;
D O I
10.1007/s10455-023-09886-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We investigate Gauss maps associated to great circle fibrations of the euclidean unit 3-sphere S-3. We show that the associated Gauss map to such a fibration is harmonic, respectively minimal, if and only if the unit vector field generating the great circle foliation is harmonic, respectively minimal. These results can be viewed as analogues of the classical theorem of Ruh and Vilms about the harmonicity of the Gauss map of a minimal submanifold in the euclidean space. Moreover, we prove that a harmonic or minimal unit vector field on S-3, whose integral curves are great circles, is a Hopf vector field.
引用
收藏
页数:25
相关论文
共 50 条
  • [21] Harmonic maps and cosymplectic manifolds
    Boeckx, E
    Gherghe, C
    JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2004, 76 : 75 - 92
  • [22] On VT-harmonic maps
    Qun Chen
    Jürgen Jost
    Hongbing Qiu
    Annals of Global Analysis and Geometry, 2020, 57 : 71 - 94
  • [23] On VT-harmonic maps
    Chen, Qun
    Jost, Juergen
    Qiu, Hongbing
    ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2020, 57 (01) : 71 - 94
  • [24] HARMONIC AND BIHARMONIC MAPS AT IASI
    Balmus, A.
    Fetcu, D.
    Oniciuc, C.
    ANALELE STIINTIFICE ALE UNIVERSITATII AL I CUZA DIN IASI-SERIE NOUA-MATEMATICA, 2010, 56 (01): : 81 - 96
  • [25] On Gaussian curvatures and singularities of Gauss maps of cuspidal edges
    Teramoto, Keisuke
    PORTUGALIAE MATHEMATICA, 2021, 78 (02) : 169 - 185
  • [26] Topological Persistence for Circle-Valued Maps
    Burghelea, Dan
    Dey, Tamal K.
    DISCRETE & COMPUTATIONAL GEOMETRY, 2013, 50 (01) : 69 - 98
  • [27] Suppression of quasiperiodicity in circle maps with quenched disorder
    Mueller-Bender, David
    Kastner, Johann Luca
    Radons, Guenter
    PHYSICAL REVIEW E, 2022, 106 (01)
  • [28] CR rigidity of pseudo harmonic maps and pseudo biharmonic maps
    Urakawa, Hajime
    HOKKAIDO MATHEMATICAL JOURNAL, 2017, 46 (02) : 141 - 187
  • [29] HARMONIC MAPS AND BIHARMONIC MAPS ON PRINCIPAL BUNDLES AND WARPED PRODUCTS
    Urakawa, Hajime
    JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2018, 55 (03) : 553 - 574
  • [30] GAP PROPERTIES OF HARMONIC MAPS AND SUBMANIFOLDS
    Chen, Qun
    Zhout, Zhen-Rong
    ARCHIVUM MATHEMATICUM, 2005, 41 (01): : 59 - 69