The dimension-wise quadrature estimation of dynamic latent variable models for count data

被引:1
作者
Bianconcini, Silvia [1 ]
Cagnone, Silvia [1 ]
机构
[1] Univ Bologna, Dept Stat Sci, Via Belle Arti 41, I-40126 Bologna, Italy
关键词
Latent autoregressive models; Count data; Pairwise likelihood; Approximate likelihood inference; TIME-SERIES MODELS; STATE-SPACE MODELS; MAXIMUM-LIKELIHOOD; INFERENCE; INTEGRATION;
D O I
10.1016/j.csda.2022.107585
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
When dynamic latent variable models are specified for discrete and/or mixed observations, problems related to the integration of the likelihood function arise since analytical solutions do not exist. A recently developed dimension-wise quadrature is applied to deal with these likelihoods with high-dimensional integrals. A comparison is performed with the pairwise likelihood method, one of the most often used remedies. Both a real data application and a simulation study show the superior performance of the dimension-wise quadrature with respect to the pairwise likelihood in estimating the parameters of the latent autoregressive process. (c) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页数:7
相关论文
共 50 条
[21]   Dynamic latent variable models for the analysis of cognitive abilities in the elderly population [J].
Bianconcini, Silvia ;
Cagnone, Silvia .
STATISTICS IN MEDICINE, 2021, 40 (20) :4410-4429
[22]   Fast and universal estimation of latent variable models using extended variational approximations [J].
Korhonen, Pekka ;
Hui, Francis K. C. ;
Niku, Jenni ;
Taskinen, Sara .
STATISTICS AND COMPUTING, 2023, 33 (01)
[23]   Inference for dynamic and latent variable models via iterated, perturbed Bayes maps [J].
Ionides, Edward L. ;
Dao Nguyen ;
Atchade, Yves ;
Stoev, Stilian ;
King, Aaron A. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2015, 112 (03) :719-724
[24]   Maximum likelihood estimation of Gaussian copula models for geostatistical count data [J].
Han, Zifei ;
De Oliveira, Victor .
COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2020, 49 (08) :1957-1981
[25]   Latent Network Estimation and Variable Selection for Compositional Data Via Variational EM [J].
Osborne, Nathan ;
Peterson, Christine B. ;
Vannucci, Marina .
JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2022, 31 (01) :163-175
[26]   Analysing state dependences in emotional experiences by dynamic count data models [J].
Böckenholt, U .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES C-APPLIED STATISTICS, 2003, 52 :213-226
[27]   Estimation of generalized linear latent variable models via fully exponential Laplace approximation [J].
Bianconcini, Silvia ;
Cagnone, Silvia .
JOURNAL OF MULTIVARIATE ANALYSIS, 2012, 112 :183-193
[28]   Sampling of pairs in pairwise likelihood estimation for latent variable models with categorical observed variables [J].
Papageorgiou, Ioulia ;
Moustaki, Irini .
STATISTICS AND COMPUTING, 2019, 29 (02) :351-365
[29]   Directed Clustering of Multivariate Data Based on Linear or Quadratic Latent Variable Models [J].
Zhang, Yingjuan ;
Einbeck, Jochen .
ALGORITHMS, 2024, 17 (08)
[30]   Mixture Poisson regression models for heterogeneous count data based on latent and fuzzy class analysis [J].
Yang, MS ;
Lai, CY .
SOFT COMPUTING, 2005, 9 (07) :519-524