The dimension-wise quadrature estimation of dynamic latent variable models for count data

被引:1
|
作者
Bianconcini, Silvia [1 ]
Cagnone, Silvia [1 ]
机构
[1] Univ Bologna, Dept Stat Sci, Via Belle Arti 41, I-40126 Bologna, Italy
关键词
Latent autoregressive models; Count data; Pairwise likelihood; Approximate likelihood inference; TIME-SERIES MODELS; STATE-SPACE MODELS; MAXIMUM-LIKELIHOOD; INFERENCE; INTEGRATION;
D O I
10.1016/j.csda.2022.107585
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
When dynamic latent variable models are specified for discrete and/or mixed observations, problems related to the integration of the likelihood function arise since analytical solutions do not exist. A recently developed dimension-wise quadrature is applied to deal with these likelihoods with high-dimensional integrals. A comparison is performed with the pairwise likelihood method, one of the most often used remedies. Both a real data application and a simulation study show the superior performance of the dimension-wise quadrature with respect to the pairwise likelihood in estimating the parameters of the latent autoregressive process. (c) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Approximate likelihood inference in generalized linear latent variable models based on the dimension-wise quadrature
    Bianconcini, Silvia
    Cagnone, Silvia
    Rizopoulos, Dimitris
    ELECTRONIC JOURNAL OF STATISTICS, 2017, 11 (02): : 4404 - 4423
  • [2] Latent variable models for ordinal data by using the adaptive quadrature approximation
    Cagnone, Silvia
    Monari, Paola
    COMPUTATIONAL STATISTICS, 2013, 28 (02) : 597 - 619
  • [3] Pairwise likelihood estimation of latent autoregressive count models
    Pedeli, Xanthi
    Varin, Cristiano
    STATISTICAL METHODS IN MEDICAL RESEARCH, 2020, 29 (11) : 3278 - 3293
  • [4] Generalized Linear Latent Variable Models for Multivariate Count and Biomass Data in Ecology
    Niku, Jenni
    Warton, David I.
    Hui, Francis K. C.
    Taskinen, Sara
    JOURNAL OF AGRICULTURAL BIOLOGICAL AND ENVIRONMENTAL STATISTICS, 2017, 22 (04) : 498 - 522
  • [5] Contrasting case-wise deletion with multiple imputation and latent variable approaches to dealing with missing observations in count regression models
    Afghari, Amir Pooyan
    Washington, Simon
    Prato, Carlo
    Haque, Md Mazharul
    ANALYTIC METHODS IN ACCIDENT RESEARCH, 2019, 24
  • [6] Data-cloning SMC2: A global optimizer for maximum likelihood estimation of latent variable models
    Duan, Jin-Chuan
    Fulop, Andras
    Hsieh, Yu-Wei
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2020, 143
  • [7] Efficient estimation of generalized linear latent variable models
    Niku, Jenni
    Brooks, Wesley
    Herliansyah, Riki
    Hui, Francis K. C.
    Taskinen, Sara
    Warton, David I.
    PLOS ONE, 2019, 14 (05):
  • [8] Variational Bayesian Estimation of Quantile Nonlinear Dynamic Latent Variable Models with Possible Nonignorable Missingness
    Tuerde, Mulati
    Muhammadhaji, Ahmadjan
    AXIOMS, 2024, 13 (12)
  • [9] Latent variable models with mixed continuous and polytomous data
    Shi, JQ
    Lee, SY
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2000, 62 : 77 - 87
  • [10] On the role of latent variable models in the era of big data
    Bartolucci, Francesco
    Bacci, Silvia
    Mira, Antonietta
    STATISTICS & PROBABILITY LETTERS, 2018, 136 : 165 - 169