Predicting prime editing efficiency and product purity by deep learning

被引:71
作者
Mathis, Nicolas [1 ]
Allam, Ahmed [2 ]
Kissling, Lucas [1 ]
Marquart, Kim Fabiano [1 ,3 ]
Schmidheini, Lukas [1 ,3 ]
Solari, Cristina [1 ]
Balazs, Zsolt [2 ]
Krauthammer, Michael [2 ]
Schwank, Gerald [1 ]
机构
[1] Univ Zurich, Inst Pharmacol & Toxicol, Zurich, Switzerland
[2] Univ Zurich, Dept Quant Biomed, Zurich, Switzerland
[3] Swiss Fed Inst Technol, Inst Mol Hlth Sci, Zurich, Switzerland
基金
瑞士国家科学基金会;
关键词
REPAIR;
D O I
10.1038/s41587-022-01613-7
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Prime editing is a versatile genome editing tool but requires experimental optimization of the prime editing guide RNA (pegRNA) to achieve high editing efficiency. Here we conducted a high-throughput screen to analyze prime editing outcomes of 92,423 pegRNAs on a highly diverse set of 13,349 human pathogenic mutations that include base substitutions, insertions and deletions. Based on this dataset, we identified sequence context features that influence prime editing and trained PRIDICT (prime editing guide prediction), an attention-based bidirectional recurrent neural network. PRIDICT reliably predicts editing rates for all small-sized genetic changes with a Spearman's R of 0.85 and 0.78 for intended and unintended edits, respectively. We validated PRIDICT on endogenous editing sites as well as an external dataset and showed that pegRNAs with high (>70) versus low (<70) PRIDICT scores showed substantially increased prime editing efficiencies in different cell types in vitro (12-fold) and in hepatocytes in vivo (tenfold), highlighting the value of PRIDICT for basic and for translational research applications.
引用
收藏
页码:1151 / +
页数:22
相关论文
共 51 条
[31]   ClinVar: improving access to variant interpretations and supporting evidence [J].
Landrum, Melissa J. ;
Lee, Jennifer M. ;
Benson, Mark ;
Brown, Garth R. ;
Chao, Chen ;
Chitipiralla, Shanmuga ;
Gu, Baoshan ;
Hart, Jennifer ;
Hoffman, Douglas ;
Jang, Wonhee ;
Karapetyan, Karen ;
Katz, Kenneth ;
Liu, Chunlei ;
Maddipatla, Zenith ;
Malheiro, Adriana ;
McDaniel, Kurt ;
Ovetsky, Michael ;
Riley, George ;
Zhou, George ;
Holmes, J. Bradley ;
Kattman, Brandi L. ;
Maglott, Donna R. .
NUCLEIC ACIDS RESEARCH, 2018, 46 (D1) :D1062-D1067
[32]   The UCSC Genome Browser database: 2022 update [J].
Lee, Brian T. ;
Barber, Galt P. ;
Benet-Pages, Anna ;
Casper, Jonathan ;
Clawson, Hiram ;
Diekhans, Mark ;
Fischer, Clay ;
Gonzalez, Jairo Navarro ;
Hinrichs, Angie S. ;
Lee, Christopher M. ;
Muthuraman, Pranav ;
Nassar, Luis R. ;
Nguy, Beagan ;
Pereira, Tiana ;
Perez, Gerardo ;
Raney, Brian J. ;
Rosenbloom, Kate R. ;
Schmelter, Daniel ;
Speir, Matthew L. ;
Wick, Brittney D. ;
Zweig, Ann S. ;
Haussler, David ;
Kuhn, Robert M. ;
Haeussler, Maximilian ;
Kent, W. James .
NUCLEIC ACIDS RESEARCH, 2022, 50 (D1) :D1115-D1122
[33]   Easy-Prime: a machine learning-based prime editor design tool [J].
Li, Yichao ;
Chen, Jingjing ;
Tsai, Shengdar Q. ;
Cheng, Yong .
GENOME BIOLOGY, 2021, 22 (01)
[34]   ViennaRNA Package 2.0 [J].
Lorenz, Ronny ;
Bernhart, Stephan H. ;
Siederdissen, Christian Hoener Zu ;
Tafer, Hakim ;
Flamm, Christoph ;
Stadler, Peter F. ;
Hofacker, Ivo L. .
ALGORITHMS FOR MOLECULAR BIOLOGY, 2011, 6
[35]  
Lundberg SM, 2017, ADV NEUR IN, V30
[36]   New developments on the Encyclopedia of DNA Elements (ENCODE) data portal [J].
Luo, Yunhai ;
Hitz, Benjamin C. ;
Gabdank, Idan ;
Hilton, Jason A. ;
Kagda, Meenakshi S. ;
Lam, Bonita ;
Myers, Zachary ;
Sud, Paul ;
Jou, Jennifer ;
Lin, Khine ;
Baymuradov, Ulugbek K. ;
Graham, Keenan ;
Litton, Casey ;
Miyasato, Stuart R. ;
Strattan, J. Seth ;
Jolanki, Otto ;
Lee, Jin-Wook ;
Tanaka, Forrest Y. ;
Adenekan, Philip ;
O'Neill, Emma ;
Cherry, J. Michael .
NUCLEIC ACIDS RESEARCH, 2020, 48 (D1) :D882-D889
[37]  
Luong T., 2015, P 2015 C EMP METH NA, P1412, DOI [DOI 10.18653/V1/D15-1166, DOI 10.18653/V1/D15]
[38]   Predicting base editing outcomes with an attention-based deep learning algorithm trained on high-throughput target library screens [J].
Marquart, Kim F. ;
Allam, Ahmed ;
Janjuha, Sharan ;
Sintsova, Anna ;
Villiger, Lukas ;
Frey, Nina ;
Krauthammer, Michael ;
Schwank, Gerald .
NATURE COMMUNICATIONS, 2021, 12 (01)
[39]  
Martin M., 2011, EMBnet.journal, V17, P10, DOI DOI 10.14806/EJ.17.1.200
[40]   Computationally designed liver-specific transcriptional modules and hyperactive factor IX improve hepatic gene therapy [J].
Nair, Nisha ;
Rincon, Melvin Y. ;
Evens, Hanneke ;
Sarcar, Shilpita ;
Dastidar, Sumitava ;
Samara-Kuko, Emira ;
Ghandeharian, Omid ;
Viecelli, Hiu Man ;
Thoeny, Beat ;
De Bleser, Pieter ;
VandenDriessche, Thierry ;
Chuah, Marinee K. .
BLOOD, 2014, 123 (20) :3195-3199