Plant biomass responses to elevated CO2 are mediated by phosphorus uptake

被引:2
|
作者
Han, Ximei [1 ]
Zhou, Guiyao [1 ,2 ,3 ,6 ]
Luo, Qin [4 ]
Ferlian, Olga [2 ,3 ]
Zhou, Lingyan [1 ]
Meng, Jingjing [1 ]
Qi, Yuan [1 ]
Pei, Jianing [1 ,5 ]
He, Yanghui [5 ]
Liu, Ruiqiang [5 ]
Du, Zhenggang [5 ]
Long, Jilan [1 ]
Zhou, Xuhui [1 ,5 ,6 ]
Eisenhauer, Nico [2 ,3 ]
机构
[1] East China Normal Univ, Ctr Global Change & Ecol Forecasting, Sch Ecol & Environm Sci, Zhejiang Tiantong Forest Ecosyst Natl Observat & R, Shanghai 200241, Peoples R China
[2] German Ctr Integrat Biodivers Res iDiv, Puschstr 4, D-04103 Leipzig, Germany
[3] Univ Leipzig, Inst Biol, Puschstr 4, D-04103 Leipzig, Germany
[4] Sun Yat Sen Univ, Sch Life Sci, Guangzhou Key Lab Urban Landscape Dynam, Guangzhou 510275, Peoples R China
[5] Northeast Forestry Univ, Northeast Asia Ecosyst Carbon sink Res Ctr NACC, Ctr Ecol Res, Sch Forestry,Key Lab Sustainable Forest Ecosyst Ma, Harbin 150040, Peoples R China
[6] East China Normal Univ, Sch Ecol & Environm Sci, Shanghai 200241, Peoples R China
基金
中国国家自然科学基金;
关键词
ElevatedCO2; Carbon sequestration; Plant carbon storage; C-climate feedback; Phosphorus availability; ATMOSPHERIC CO2; CARBON-DIOXIDE; WATER-USE; NITROGEN; GROWTH; LIMITATION; FERTILIZATION; PRODUCTIVITY; MYCORRHIZAS; ENRICHMENT;
D O I
10.1016/j.scitotenv.2022.160775
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Elevated atmospheric CO2 concentrations [CO2] potentially alter carbon (C) and phosphorus (P) cycles in terrestrial ecosystems. Although numerous field experiments and a few meta-analyses have been conducted, it is still largely un-clear how the P cycle affects plant biomass responses under elevated [CO2] globally. Here, we conducted a global syn-thesis by analyzing 111 studies on the responses of above-and belowground P cycling to elevated [CO2], to examine how changes in the P cycle affect the plant biomass response to elevated [CO2]. Our results show that elevated [CO2] significantly increased plant aboveground biomass (+13 %), stem biomass (+4 %), leaf biomass (+11 %), below -ground biomass (+12 %), and the root: shoot ratio (+7 %). Effects of elevated [CO2] on aboveground biomass, below -ground biomass, and root: shoot ratio were best explained by plant P uptake. In addition, elevated [CO2]-induced changes in the aboveground P pool, leaf P pool, and leaf P concentration were modulated by ecological drivers, such as Delta CO2, experimental duration, and aridity index. Our findings highlight the importance of plant P uptake for both above-and belowground plant biomass responses under elevated [CO2], which should be considered in future biosphere models to improve predictions of terrestrial carbon-climate feedbacks.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] Nitrogen and phosphorus constrain the CO2 fertilization of global plant biomass
    Terrer, Cesar
    Jackson, Robert B.
    Prentice, I. Colin
    Keenan, Trevor F.
    Kaiser, Christina
    Vicca, Sara
    Fisher, Joshua B.
    Reich, Peter B.
    Stocker, Benjamin D.
    Hungate, Bruce A.
    Penuelas, Josep
    McCallum, Ian
    Soudzilovskaia, Nadejda A.
    Cernusak, Lucas A.
    Talhelm, Alan F.
    Van Sundert, Kevin
    Piao, Shilong
    Newton, Paul C. D.
    Hovenden, Mark J.
    Blumenthal, Dana M.
    Liu, Yi Y.
    Mueller, Christoph
    Winter, Klaus
    Field, Christopher B.
    Viechtbauer, Wolfgang
    Van Lissa, Caspar J.
    Hoosbeek, Marcel R.
    Watanabe, Makoto
    Koike, Takayoshi
    Leshyk, Victor O.
    Polley, H. Wayne
    Franklin, Oskar
    NATURE CLIMATE CHANGE, 2019, 9 (09) : 684 - +
  • [22] Ecosystem responses to elevated CO2 governed by plant-soil interactions and the cost of nitrogen acquisition
    Terrer, Cesar
    Vicca, Sara
    Stocker, Benjamin D.
    Hungate, Bruce A.
    Phillips, Richard P.
    Reich, Peter B.
    Finzi, Adrien C.
    Prentice, I. Colin
    NEW PHYTOLOGIST, 2018, 217 (02) : 507 - 522
  • [23] Phosphorus availability and arbuscular mycorrhizal fungi limit soil C cycling and influence plant responses to elevated CO2 conditions
    Castaneda-Gomez, L.
    Powell, J. R.
    Pendall, E.
    Carrillo, Y.
    BIOGEOCHEMISTRY, 2022, 160 (01) : 69 - 87
  • [24] Effects of elevated CO2 and phosphorus supply on growth, photosynthesis and nutrient uptake in the marine macroalga Gracilaria lemaneiformis (Rhodophyta)
    Xu, Zhiguang
    Zou, Dinghui
    Gao, Kunshan
    BOTANICA MARINA, 2010, 53 (02) : 123 - 129
  • [25] Unexpected Responses of Bean Leaf Size to Elevated CO2
    Bunce, James
    PLANTS-BASEL, 2022, 11 (07):
  • [26] Enhancing biomass production and yield by maintaining enhanced capacity for CO2 uptake in response to elevated CO2
    Dahal, Keshav
    Weraduwage, Sarathi M.
    Kane, Khalil
    Rauf, Shezad A.
    Leonardos, Evangelos D.
    Gadapati, Winona
    Savitch, Leonid
    Singh, Jas
    Marillia, Elizabeth-France
    Taylor, David C.
    Micallef, Malgre C.
    Knowles, Vicki
    Plaxton, William
    Barron, John
    Sarhan, Fathey
    Huener, Norman
    Grodzinski, Bernard
    Micallef, Barry J.
    CANADIAN JOURNAL OF PLANT SCIENCE, 2014, 94 (06) : 1075 - 1083
  • [27] Herbivory and elevated levels of CO2 and nutrients separately, rather than synergistically, impacted biomass production and allocation in invasive and native plant species
    Shan, Liping
    Oduor, Ayub M. O.
    Liu, Yanjie
    GLOBAL CHANGE BIOLOGY, 2023, 29 (23) : 6741 - 6755
  • [28] Magnitude and mechanisms of nitrogen-mediated responses of tree biomass production to elevated CO2: A global synthesis
    Wang, Zhaoguo
    Wang, Chuankuan
    JOURNAL OF ECOLOGY, 2021, 109 (12) : 4038 - 4055
  • [29] Understorey plant community assemblage of Australian Eucalyptus woodlands under elevated CO2 is modulated by water and phosphorus availability
    Ochoa-Hueso, Raul
    Carroll, Rani
    Pineiro, Juan
    Power, Sally A.
    JOURNAL OF PLANT ECOLOGY, 2021, 14 (03) : 478 - 490
  • [30] Can the plant-mediated impacts on aphids of elevated CO2 and drought be predicted?
    Pritchard, J.
    Griffiths, B.
    Hunt, E. J.
    GLOBAL CHANGE BIOLOGY, 2007, 13 (08) : 1616 - 1629