On morphic modules over commutative rings

被引:1
作者
Bouba, El Mehdi [1 ]
Tamekkante, Mohammed [2 ]
Tekir, Unsal [3 ]
Koc, Suat [4 ]
机构
[1] Mohammed First Univ, Team Modeling & Sci Comp, Pluridisciplinary Fac, Math Dept, BP 300, Selouane 62700, Nador, Morocco
[2] Univ Moulay Ismail Meknes, Fac Sci, Dept Math, Box 11201, Zitoune, Morocco
[3] Marmara Univ, Dept Math, Istanbul, Turkiye
[4] Istanbul Medeniyet Univ, Dept Math, Istanbul, Turkiye
来源
BEITRAGE ZUR ALGEBRA UND GEOMETRIE-CONTRIBUTIONS TO ALGEBRA AND GEOMETRY | 2024年 / 65卷 / 01期
关键词
Comorphic ring; Comorphic module;
D O I
10.1007/s13366-022-00672-w
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A commutative ring R is said to be a morphic ring if for each a is an element of R there exists b is an element of R such that ann(a) = Rb and ann(b) = Ra. In this paper, we extend the notion of morphic rings to modules and we study the introduced concept by comparing it with some related notions.
引用
收藏
页码:1 / 11
页数:11
相关论文
共 14 条
[1]   Comorphic rings [J].
Alkan, M. ;
Nicholson, W. K. ;
Ozcan, A. C. .
JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2018, 17 (04)
[2]  
Atiyah M. F., 1969, Introduction to Commutative Algebra
[3]   Quasi-morphic rings [J].
Camillo, V. ;
Nicholson, W. K. .
JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2007, 6 (05) :789-799
[4]   Locally torsion-free modules [J].
Jayaram, C. ;
Ugurlu, Emel Aslankarayigit ;
Tekir, Unsal ;
Koc, Suat .
JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2023, 22 (05)
[5]   von Neumann regular modules [J].
Jayaram, C. ;
Tekir, Unsal .
COMMUNICATIONS IN ALGEBRA, 2018, 46 (05) :2205-2217
[6]   ON BAER MODULES [J].
Jayaram, Chillumuntala ;
Tekir, Unsal ;
Koc, Suat .
REVISTA DE LA UNION MATEMATICA ARGENTINA, 2022, 63 (01) :109-128
[7]   Quasi regular modules and trivial extension [J].
Jayaram, Chillumuntala ;
Tekir, Unsal ;
Koc, Suat .
HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2021, 50 (01) :120-134
[8]  
KIST J, 1963, P LOND MATH SOC, V13, P31, DOI DOI 10.1112/PLMS/S3-13.1.31
[9]  
Lee T.-K., 2004, Lecture Notes in Pure and Applied Mathematics, V236, P365
[10]   Morphic modules [J].
Nicholson, WK ;
Campos, ES .
COMMUNICATIONS IN ALGEBRA, 2005, 33 (08) :2629-2647