The composites of cross-linked polyethylene with enhanced thermal conductivity

被引:0
|
作者
Latko-Duralek, Paulina [1 ]
Salasinska, Kamila [1 ]
Kubis, Michal [2 ]
Kozera, Paulina [1 ]
Pietrak, Karol [2 ]
Rojewski, Szymon [3 ]
Jurczyk-Kowalska, Magdalena [1 ]
Szlazak, Karol [1 ]
Lapka, Piotr [2 ]
Boczkowska, Anna [1 ]
机构
[1] Warsaw Univ Technol, Fac Mat Sci & Engn, Woloska Str 141, PL-02507 Warsaw, Poland
[2] Warsaw Univ Technol, Fac Power & Aeronaut Engn, Inst Heat Engn, Nowowiejska Str 21 25, PL-00665 Warsaw, Poland
[3] Natl Res Inst, Inst Nat Fibers & Med Plants, Dept Pharmacol & Phytochem, Kolejowa Str 2, PL-62064 Plewiska, Poland
关键词
Polymer matrix composites; Cross-linked polyethylene; Particle-reinforcement; Thermal properties; Analytical Modeling; MECHANICAL-PROPERTIES; LINKING; DENSITY; OIL;
D O I
10.1007/s10973-024-13000-2
中图分类号
O414.1 [热力学];
学科分类号
摘要
This paper describes the composites of silane cross-linked polyethylene (PEXb) mixed with four different fillers dedicated to improving thermal conductivity, such as multi-walled carbon nanotubes, graphite, boron nitride, and mineral filler. Using the mathematical modeling, the concentration of each filler was estimated to reach the value of 0.675 W m-1 K-1 suitable for the usage PEXb in the production of geothermal pipes. From tested fillers, all improve the thermal conductivity of pure PEXb; however, above the required value, only 28 mass% of boron nitride (0.937 W m-1 K-1). It was associated with its perfect dispersion and the highest gel content achieved, also resulting in the highest flexural modulus. Graphite at 5 mass% and mineral filler at 35 mass% allowed the thermal conductivity to equal 0.622 W m-1 K-1 and 0.624 W m-1 K-1, respectively, with a simultaneous medium effect on the mechanical properties. Carbon nanotubes increased PEX's conductivity to a small extent, due to their occurrence as agglomerates.
引用
收藏
页码:4385 / 4396
页数:12
相关论文
共 50 条
  • [1] Thermal conductivity of silane cross-linked polyethylene composites
    Poostforush, Md.
    Azizi, H.
    Ghasemi, I.
    BULGARIAN CHEMICAL COMMUNICATIONS, 2016, 48 : 125 - 130
  • [2] Thermal conductivity of cross-linked polyethylene from molecular dynamics simulation
    Xiong, Xue
    Yang, Ming
    Liu, Changlin
    Li, Xiaobo
    Tang, Dawei
    JOURNAL OF APPLIED PHYSICS, 2017, 122 (03)
  • [3] THERMAL ANALYSES OF CROSS-LINKED POLYETHYLENE
    Polansky, R.
    ADVANCES IN ELECTRICAL AND ELECTRONIC ENGINEERING, 2007, 6 (03) : 121 - 126
  • [4] Thermal aging of cross-linked polyethylene
    Boukezzi, Larbi
    Nedjar, Mohammed
    Mokhnache, Leila
    Lallouani, Mohamed
    Boubakeur, Ahmed
    ANNALES DE CHIMIE-SCIENCE DES MATERIAUX, 2006, 31 (05): : 561 - 569
  • [5] THE THERMAL-CONDUCTIVITY OF CROSS-LINKED POLYETHYLENE INSULATION IN AERIAL BUNDLED CABLES
    MORGAN, VT
    IEEE TRANSACTIONS ON ELECTRICAL INSULATION, 1991, 26 (06): : 1153 - 1158
  • [6] Conductivity of interconnected channels in water treed cross-linked polyethylene
    Kawai, J
    Shinagawa, J
    Ebinuma, Y
    EIGHTH INTERNATIONAL CONFERENCE ON DIELECTRIC MATERIALS, MEASUREMENTS AND APPLICATIONS, 2000, (473): : 230 - 235
  • [7] THERMAL-OXIDATION OF PHOTOCHEMICALLY CROSS-LINKED POLYETHYLENE
    LITSOV, NI
    JAKOVLEV, VB
    NIKOLAEVSKAJA, VI
    POLYMER DEGRADATION AND STABILITY, 1991, 32 (01) : 1 - 7
  • [8] MORPHOLOGY OF CROSS-LINKED POLYETHYLENE
    不详
    EPRI JOURNAL, 1983, 8 (08): : 47 - 47
  • [9] PHOTODEGRADATION OF CROSS-LINKED POLYETHYLENE
    TORIKAI, A
    ASADA, S
    FUEKI, K
    POLYMER PHOTOCHEMISTRY, 1986, 7 (01): : 1 - 11
  • [10] ON THE CRYSTALLIZATION OF CROSS-LINKED POLYETHYLENE
    BONGARDT, J
    MAY, M
    PLASTE UND KAUTSCHUK, 1986, 33 (05): : 172 - 175