A Review on Atrial Fibrillation Detection From Ambulatory ECG

被引:1
作者
Ma, Caiyun [1 ]
Xiao, Zhijun [1 ]
Zhao, Lina [1 ]
Biton, Shany [2 ]
Behar, Joachim A. [2 ]
Long, Xi [3 ]
Vullings, Rik [4 ]
Aarts, Ronald M. [4 ]
Li, Jianqing [1 ]
Liu, Chengyu [5 ]
机构
[1] Southeast Univ, Sch Instrument Sci & Engn, State Key Lab Digital Med Engn, Nanjing, Peoples R China
[2] Technion IIT, Fac Biomed Engn, Haifa, Israel
[3] Eindhoven Univ Technol, Dept Elect Engn, NL-5600 MB Eindhoven, Netherlands
[4] Eindhoven Univ Technol, Dept Elect Engn, Eindhoven, Netherlands
[5] Southeast Univ, Sch Instrument Sci & Engn, State Key Lab Digital Med Engn, Nanjing 210096, Peoples R China
基金
中国国家自然科学基金;
关键词
Atrial fibrillation (AF); electrocardiogram (ECG); ambulatory ECG; QRS DETECTION ALGORITHM; SIGNAL QUALITY INDEXES; ARTIFICIAL-INTELLIGENCE; ARRHYTHMIA DETECTION; ELECTROCARDIOGRAM; RISK; COMPLEXITY; STROKE; RHYTHM; HOLTER;
D O I
10.1109/TBME.2023.3321792
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Atrial fibrillation (AF) is a prevalent clinical arrhythmia disease and is an important cause of stroke, heart failure, and sudden death. Due to the insidious onset and no obvious clinical symptoms of AF, the status of AF diagnosis and treatment is not optimal. Early AF screening or detection is essential. Internet of Things (IoT) and artificial intelligence (AI) technologies have driven the development of wearable electrocardiograph (ECG) devices used for health monitoring, which are an effective means of AF detection. The main challenges of AF analysis using ambulatory ECG include ECG signal quality assessment to select available ECG, the robust and accurate detection of QRS complex waves to monitor heart rate, and AF identification under the interference of abnormal ECG rhythm. Through ambulatory ECG measurement and intelligent detection technology, the probability of postoperative recurrence of AF can be reduced, and personalized treatment and management of patients with AF can be realized. This work describes the status of AF monitoring technology in terms of devices, algorithms, clinical applications, and future directions.
引用
收藏
页码:876 / 892
页数:17
相关论文
共 141 条
[1]   Observations on the transition from intermittent to permanent atrial fibrillation [J].
Al-Khatib, SM ;
Wilkinson, WE ;
Sanders, LL ;
McCarthy, EA ;
Pritchett, ELC .
AMERICAN HEART JOURNAL, 2000, 140 (01) :142-145
[2]   Predicting Atrial Fibrillation and Its Complications [J].
Alonso, Alvaro ;
Norby, Faye L. .
CIRCULATION JOURNAL, 2016, 80 (05) :1061-1066
[3]   Simple Risk Model Predicts Incidence of Atrial Fibrillation in a Racially and Geographically Diverse Population: the CHARGE-AF Consortium [J].
Alonso, Alvaro ;
Krijthe, Bouwe P. ;
Aspelund, Thor ;
Stepas, Katherine A. ;
Pencina, Michael J. ;
Moser, Carlee B. ;
Sinner, Moritz F. ;
Sotoodehnia, Nona ;
Fontes, Joao D. ;
Janssens, A. Cecile J. W. ;
Kronmal, Richard A. ;
Magnani, Jared W. ;
Witteman, Jacqueline C. ;
Chamberlain, Alanna M. ;
Lubitz, Steven A. ;
Schnabel, Renate B. ;
Agarwal, Sunil K. ;
McManus, David D. ;
Ellinor, Patrick T. ;
Larson, Martin G. ;
Burke, Gregory L. ;
Launer, Lenore J. ;
Hofman, Albert ;
Levy, Daniel ;
Gottdiener, John S. ;
Kaeaeb, Stefan ;
Couper, David ;
Harris, Tamara B. ;
Soliman, Elsayed Z. ;
Stricker, Bruno H. C. ;
Gudnason, Vilmundur ;
Heckbert, Susan R. ;
Benjamin, Emelia J. .
JOURNAL OF THE AMERICAN HEART ASSOCIATION, 2013, 2 (02) :e000102
[4]   Paroxysmal atrial fibrillation detection in patients with acute ischemic stroke through prolonged Holter: prospective study [J].
Alves, Mariana ;
Narciso, Marco Ribeiro ;
Cruz, Joao ;
Rocha, Marina ;
Fonseca, Teresa .
AGING CLINICAL AND EXPERIMENTAL RESEARCH, 2019, 31 (04) :469-474
[5]   A deep learning approach for real-time detection of atrial fibrillation [J].
Andersen, Rasmus S. ;
Peimankar, Abdolrahman ;
Puthusserypady, Sadasivan .
EXPERT SYSTEMS WITH APPLICATIONS, 2019, 115 :465-473
[6]   Application of artificial intelligence to the electrocardiogram [J].
Attia, Zachi, I ;
Harmon, David M. ;
Behr, Elijah R. ;
Friedman, Paul A. .
EUROPEAN HEART JOURNAL, 2021, 42 (46) :4717-+
[7]   An artificial intelligence-enabled ECG algorithm for the identification of patients with atrial fibrillation during sinus rhythm: a retrospective analysis of outcome prediction [J].
Attia, Zachi, I ;
Noseworthy, Peter A. ;
Lopez-Jimenez, Francisco ;
Asirvatham, Samuel J. ;
Deshmukh, Abhishek J. ;
Gersh, Bernard J. ;
Carter, Rickey E. ;
Yao, Xiaoxi ;
Rabinstein, Alejandro A. ;
Erickson, Brad J. ;
Kapa, Suraj ;
Friedman, Paul A. .
LANCET, 2019, 394 (10201) :861-867
[8]   Refined multiscale fuzzy entropy based on standard deviation for biomedical signal analysis [J].
Azami, Hamed ;
Fernandez, Alberto ;
Escudero, Javier .
MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING, 2017, 55 (11) :2037-2052
[9]   A new deep learning algorithm of 12-lead electrocardiogram for identifying atrial fibrillation during sinus rhythm [J].
Baek, Yong-Soo ;
Lee, Sang-Chul ;
Choi, Wonik ;
Kim, Dae-Hyeok .
SCIENTIFIC REPORTS, 2021, 11 (01)
[10]   ECG Signal Quality During Arrhythmia and Its Application to False Alarm Reduction [J].
Behar, Joachim ;
Oster, Julien ;
Li, Qiao ;
Clifford, Gari D. .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2013, 60 (06) :1660-1666