Semi-supervised auto-segmentation method for pelvic organ-at-risk in magnetic resonance images based on deep-learning

被引:1
作者
Li, Xianan [1 ]
Jia, Lecheng [2 ,3 ]
Lin, Fengyu [2 ]
Chai, Fan [4 ]
Liu, Tao [4 ]
Zhang, Wei [5 ]
Wei, Ziquan [2 ]
Xiong, Weiqi [5 ]
Li, Hua [2 ]
Zhang, Min [1 ]
Wang, Yi [4 ]
机构
[1] Peking Univ Peoples Hosp, Dept Radiat Oncol, Beijing, Peoples R China
[2] Shenzhen United Imaging Res Inst Innovat Med Equi, Radiotherapy Lab, Shenzhen, Peoples R China
[3] Zhejiang Engn Res Ctr Innovat & Applicat Intellig, Wenzhou, Peoples R China
[4] Peking Univ Peoples Hosp, Dept Radiol, 11 Xizhimen South St, Beijing 100044, Peoples R China
[5] Shanghai United Imaging Healthcare Co Ltd, Radiotherapy Business Unit, Shanghai, Peoples R China
关键词
auto-segmentation; deep-learning; semi-supervised learning; NETWORK; MRI;
D O I
10.1002/acm2.14296
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Background and purposeIn radiotherapy, magnetic resonance (MR) imaging has higher contrast for soft tissues compared to computed tomography (CT) scanning and does not emit radiation. However, manual annotation of the deep learning-based automatic organ-at-risk (OAR) delineation algorithms is expensive, making the collection of large-high-quality annotated datasets a challenge. Therefore, we proposed the low-cost semi-supervised OAR segmentation method using small pelvic MR image annotations.MethodsWe trained a deep learning-based segmentation model using 116 sets of MR images from 116 patients. The bladder, femoral heads, rectum, and small intestine were selected as OAR regions. To generate the training set, we utilized a semi-supervised method and ensemble learning techniques. Additionally, we employed a post-processing algorithm to correct the self-annotation data. Both 2D and 3D auto-segmentation networks were evaluated for their performance. Furthermore, we evaluated the performance of semi-supervised method for 50 labeled data and only 10 labeled data.ResultsThe Dice similarity coefficient (DSC) of the bladder, femoral heads, rectum and small intestine between segmentation results and reference masks is 0.954, 0.984, 0.908, 0.852 only using self-annotation and post-processing methods of 2D segmentation model. The DSC of corresponding OARs is 0.871, 0.975, 0.975, 0.783, 0.724 using 3D segmentation network, 0.896, 0.984, 0.890, 0.828 using 2D segmentation network and common supervised method.ConclusionThe outcomes of our study demonstrate that it is possible to train a multi-OAR segmentation model using small annotation samples and additional unlabeled data. To effectively annotate the dataset, ensemble learning and post-processing methods were employed. Additionally, when dealing with anisotropy and limited sample sizes, the 2D model outperformed the 3D model in terms of performance.
引用
收藏
页数:11
相关论文
共 38 条
[1]   Domain adversarial networks and intensity-based data augmentation for male pelvic organ segmentation in cone beam CT [J].
Brion, Eliott ;
Leger, Jean ;
Barragan-Montero, A. M. ;
Meert, Nicolas ;
Lee, John A. ;
Macq, Benoit .
COMPUTERS IN BIOLOGY AND MEDICINE, 2021, 131
[2]   Contouring Variability of the Penile Bulb on CT Images: Quantitative Assessment Using a Generalized Concordance Index [J].
Carillo, Viviana ;
Cozzarini, Cesare ;
Perna, Lucia ;
Calandra, Mauro ;
Gianolini, Stefano ;
Rancati, Tiziana ;
Spinelli, Antonello Enrico ;
Vavassori, Vittorio ;
Villa, Sergio ;
Valdagni, Riccardo ;
Fiorino, Claudio .
INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2012, 84 (03) :841-846
[3]   Automatic model-based segmentation of the heart in CT images [J].
Ecabert, Olivier ;
Peters, Jochen ;
Schramm, Hauke ;
Lorenz, Cristian ;
von Berg, Jens ;
Walker, Matthew J. ;
Vembar, Mani ;
Olszewski, Mark E. ;
Subramanyan, Krishna ;
Lavi, Guy ;
Weese, Juergen .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2008, 27 (09) :1189-1201
[4]   Pelvic multi-organ segmentation on cone-beam CT for prostate adaptive radiotherapy [J].
Fu, Yabo ;
Lei, Yang ;
Wang, Tonghe ;
Tian, Sibo ;
Patel, Pretesh ;
Jani, Ashesh B. ;
Curran, Walter J. ;
Liu, Tian ;
Yang, Xiaofeng .
MEDICAL PHYSICS, 2020, 47 (08) :3415-3422
[5]  
Fu Zhou, 2021, 2021 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), P1213, DOI 10.1109/BIBM52615.2021.9669883
[6]  
Furtado P., 2021, Biomedinformatics, V1, P88, DOI DOI 10.3390/BIOMEDINFORMATICS1030007
[7]   Self-channel-and-spatial-attention neural network for automated multi-organ segmentation on head and neck CT images [J].
Gou, Shuiping ;
Tong, Nuo ;
Qi, Sharon ;
Yang, Shuyuan ;
Chin, Robert ;
Sheng, Ke .
PHYSICS IN MEDICINE AND BIOLOGY, 2020, 65 (24)
[8]   The state of the art in kidney and kidney tumor segmentation in contrast-enhanced CT imaging: Results of the KiTS19 challenge [J].
Heller, Nicholas ;
Isensee, Fabian ;
Maier-Hein, Klaus H. ;
Hou, Xiaoshuai ;
Xie, Chunmei ;
Li, Fengyi ;
Nan, Yang ;
Mu, Guangrui ;
Lin, Zhiyong ;
Han, Miofei ;
Yao, Guang ;
Gao, Yaozong ;
Zhang, Yao ;
Wang, Yixin ;
Hou, Feng ;
Yang, Jiawei ;
Xiong, Guangwei ;
Tian, Jiang ;
Zhong, Cheng ;
Ma, Jun ;
Rickman, Jack ;
Dean, Joshua ;
Stai, Bethany ;
Tejpaul, Resha ;
Oestreich, Makinna ;
Blake, Paul ;
Kaluzniak, Heather ;
Raza, Shaneabbas ;
Rosenberg, Joel ;
Moore, Keenan ;
Walczak, Edward ;
Rengel, Zachary ;
Edgerton, Zach ;
Vasdev, Ranveer ;
Peterson, Matthew ;
McSweeney, Sean ;
Peterson, Sarah ;
Kalapara, Arveen ;
Sathianathen, Niranjan ;
Papanikolopoulos, Nikolaos ;
Weight, Christopher .
MEDICAL IMAGE ANALYSIS, 2021, 67
[9]   nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation [J].
Isensee, Fabian ;
Jaeger, Paul F. ;
Kohl, Simon A. A. ;
Petersen, Jens ;
Maier-Hein, Klaus H. .
NATURE METHODS, 2021, 18 (02) :203-+
[10]   Automatic segmentation of pelvic organs-at-risk using a fusion network model based on limited training samples [J].
Ju, Zhongjian ;
Wu, Qingnan ;
Yang, Wei ;
Gu, Shanshan ;
Guo, Wen ;
Wang, Jinyuan ;
Ge, Ruigang ;
Quan, Hong ;
Liu, Jie ;
Qu, Baolin .
ACTA ONCOLOGICA, 2020, 59 (08) :933-939