Non-linear bi-algebraic curves and surfaces in moduli spaces of Abelian differentials

被引:0
作者
Deroin, Bertrand [1 ,2 ]
Matheus, Carlos [3 ,4 ]
机构
[1] CNRS, F-95302 Cergy Pontoise, France
[2] Univ Cergy Pontoise, UMR CNRS 8088, F-95302 Cergy Pontoise, France
[3] CNRS, F-91128 Palaiseau, France
[4] Ecole Polytech, UMR CNRS 7640, F-91128 Palaiseau, France
关键词
GEOMETRY;
D O I
10.5802/crmath.529
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The strata of the moduli spaces of Abelian differentials are non-homogenous spaces carrying natural bi-algebraic structures. Partly inspired by the case of homogenous spaces carrying bi-algebraic structures (such as torii, Abelian varieties and Shimura varieties), Klingler and Lerer recently showed that any bi-algebraic curve in a stratum of the moduli space of Abelian differentials is linear provided that the so-called condition (star) is fulfilled. In this note, we construct a non-linear bi-algebraic curve, resp. surface, of Abelian differentials of genus 7, resp. 10.
引用
收藏
页码:1691 / 1698
页数:8
相关论文
共 14 条
  • [1] THE KONTSEVICH-ZORICH COCYCLE OVER VEECH-MCMULLEN FAMILY OF SYMMETRIC TRANSLATION SURFACES
    Avila, Artur
    Matheus, Carlos
    Yoccoz, Jean-Christophe
    [J]. JOURNAL OF MODERN DYNAMICS, 2019, 14 : 21 - 54
  • [2] TAME TOPOLOGY OF ARITHMETIC QUOTIENTS AND ALGEBRAICITY OF HODGE LOCI
    Bakker, B.
    Klingler, B.
    Tsimerman, J.
    [J]. JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2020, 33 (04) : 917 - 939
  • [3] Baldi G, 2023, Arxiv, DOI arXiv:2107.08838
  • [4] Clemens C. H, 1980, University Series in Mathematics
  • [5] INVARIANT AND STATIONARY MEASURES FOR THE SL(2, R) ACTION ON MODULI SPACE
    Eskin, Alex
    Mirzakhani, Maryam
    [J]. PUBLICATIONS MATHEMATIQUES DE L IHES, 2018, 127 (01): : 95 - 324
  • [6] Isolation, equidistribution, and orbit closures for the SL(2,R) action on moduli space
    Eskin, Alex
    Mirzakhani, Maryam
    Mohammadi, Amir
    [J]. ANNALS OF MATHEMATICS, 2015, 182 (02) : 673 - 721
  • [7] SQUARE-TILED CYCLIC COVERS
    Forni, Giovanni
    Matheus, Carlos
    Zorich, Anton
    [J]. JOURNAL OF MODERN DYNAMICS, 2011, 5 (02) : 285 - 318
  • [8] Gutkin E, 2000, DUKE MATH J, V103, P191
  • [9] Bi-algebraic geometry and the Andre-Oort conjecture
    Klingler, B.
    Ullmo, E.
    Yafaev, A.
    [J]. ALGEBRAIC GEOMETRY: SALT LAKE CITY 2015, PT 2, 2018, 97 : 319 - 359
  • [10] Klingler B., 2022, arXiv