FOREST BIOPHYSICAL PARAMETER ESTIMATION VIA MACHINE LEARNING AND NEURAL NETWORK APPROACHES

被引:1
作者
Aksoy, Samet [1 ]
Al Shwayyat, Shouq Zuhter Hasan [2 ]
Topgul, Sule Nur [1 ]
Sertel, Elif [1 ]
Unsalan, Cem [2 ]
Salo, Jari [3 ]
Holmstrom, Anton [4 ]
Wallerman, Jorgen [5 ]
Nilsson, Mats [5 ]
Fransson, Johan E. S. [6 ]
机构
[1] Istanbul Tech Univ, Istanbul, Turkiye
[2] Marmara Univ, Istanbul, Turkiye
[3] Univ Helsinki, Helsinki, Finland
[4] Katam Technol, Lund, Sweden
[5] Swedish Univ Agr Sci, Uppsala, Sweden
[6] Linnaeus Univ, Vaxjo, Sweden
来源
IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM | 2023年
基金
瑞典研究理事会; 芬兰科学院;
关键词
Forest; map; global; machine learning; Artificial Intelligence;
D O I
10.1109/IGARSS52108.2023.10282899
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
This paper presents the first results of the ongoing development of new forest mapping methods for the Swedish national forest mapping case using Airborne Laser Scanning (ALS) data, utilizing the recent findings in machine learning (ML) and Artificial Intelligence (AI) techniques. We used Random Forest (RF) and eXtreme Gradient Boosting (XGBoost) as ML models. In addition, Neural networks (NN) based approaches were utilized in this study. ALS derived features were used to estimate the stem volume (V), above-ground biomass (AGB), basal area (B), tree height (H), stem diameter (D), and forest stand age (A). XGBoost ML algorithm outperformed RF 1 % to 3 % in the R-2 metric. NN model performed similar to ML model, however it is superior in the estimation of V, AGB, and B parameters.
引用
收藏
页码:2661 / 2664
页数:4
相关论文
共 11 条
  • [1] Assessing the performance of machine learning algorithms for soil salinity mapping in Google Earth Engine platform using Sentinel-2A and Landsat-8 OLI data
    Aksoy, Samet
    Yildirim, Aylin
    Gorji, Taha
    Hamzehpour, Nikou
    Tanik, Aysegul
    Sertel, Elif
    [J]. ADVANCES IN SPACE RESEARCH, 2022, 69 (02) : 1072 - 1086
  • [2] Random forests
    Breiman, L
    [J]. MACHINE LEARNING, 2001, 45 (01) : 5 - 32
  • [3] XGBoost: A Scalable Tree Boosting System
    Chen, Tianqi
    Guestrin, Carlos
    [J]. KDD'16: PROCEEDINGS OF THE 22ND ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2016, : 785 - 794
  • [4] Discrimination of species composition types of a grazed pasture landscape using Sentinel-1 and Sentinel-2 data
    Crabbe, Richard A.
    Lamb, David
    Edwards, Clare
    [J]. INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2020, 84
  • [5] Adapting National Forest Inventories to changing requirements - the case of the Swedish National Forest Inventory at the turn of the 20th century
    Fridman, Jonas
    Holm, Soren
    Nilsson, Mats
    Nilsson, Per
    Ringvall, Anna Hedstrom
    Stahl, Goran
    [J]. SILVA FENNICA, 2014, 48 (03)
  • [6] A nationwide forest attribute map of Sweden predicted using airborne laser scanning data and field data from the National Forest Inventory
    Nilsson, Mats
    Nordkvist, Karin
    Jonzen, Jonas
    Lindgren, Nils
    Axensten, Peder
    Wallerman, Jorgen
    Egberth, Mikael
    Larsson, Svante
    Nilsson, Liselott
    Eriksson, Johan
    Olsson, Hakan
    [J]. REMOTE SENSING OF ENVIRONMENT, 2017, 194 : 447 - 454
  • [7] Tree species classification in a temperate mixed forest using a combination of imaging spectroscopy and airborne laser scanning
    Torabzadeh, Hossein
    Leiterer, Reik
    Hueni, Andreas
    Schaepman, Michael E.
    Morsdorf, Felix
    [J]. AGRICULTURAL AND FOREST METEOROLOGY, 2019, 279
  • [8] Wan H., 2021, REMOTE SENSING, V13
  • [9] Wang S. Y., 2019, REMOTE SENSING, V11
  • [10] Automatic detection of harvested trees and determination of forest growth using airborne laser scanning
    Yu, XW
    Hyyppä, J
    Kaartinen, H
    Maltamo, M
    [J]. REMOTE SENSING OF ENVIRONMENT, 2004, 90 (04) : 451 - 462