Experimental analysis on thermal energy storage performance of micro-encapsulated stearic acid and stearyl alcohol PCM slurries; A comparative study

被引:6
作者
Boldoo, Tsogtbilegt [1 ]
Chinnasamy, Veerakumar [2 ]
You, Nayoung [1 ]
Cho, Honghyun [2 ]
机构
[1] Chosun Univ, Grad Sch, Dept Mech Engn, Renewable Energy Lab, Gwangju, South Korea
[2] Chosun Univ, Dept Mech Engn, Gwangju, South Korea
基金
新加坡国家研究基金会;
关键词
Phase change material; Stearyl alcohol; Stearic acid; Ethylene glycol; Thermal energy storage; Micro-encapsulated slurry; TES; SYSTEMS;
D O I
10.1016/j.est.2023.109218
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
This study examined the thermal performance of a slurry containing micro-encapsulated phase change materials (me-PCMs) for thermal energy storage (TES) applications such as solar thermal or PVT systems. Specifically, the study focused on stearic acid (SAC) and stearyl alcohol (SAL) as the phase change materials, dispersed within an ethylene glycol aqueous solution. The research revealed that increasing the concentration of PCM in the slurry led to improved latent heat energies for both micro-encapsulated stearic acid (me-SAC) and micro-encapsulated stearyl alcohol (me-SAL) slurries during melting and solidification processes. Moreover, me-SAL slurries exhibited higher latent heat energies compared to me-SAC slurries at the same concentrations. The addition of CTAB surfactant positively influenced the stability of the slurry dispersion, ensuring a more even distribution of me-PCMs within the base fluid. These findings highlight the potential of me-SAC and me-SAL slurries as effective materials for TES applications. Significantly, me-SAL slurries outperformed me-SAC slurries in TES performance due to their greater latent heat energies during melting and solidification.
引用
收藏
页数:13
相关论文
共 45 条
  • [21] Energizing organic phase change materials using silver nanoparticles for thermal energy storage
    Kalidasan, B.
    Pandey, A. K.
    Saidur, R.
    Tyagi, V. V.
    [J]. JOURNAL OF ENERGY STORAGE, 2023, 58
  • [22] A review of performance enhancement of PCM based latent heat storage system within the context of materials, thermal stability and compatibility
    Khan, Zakir
    Khan, Zulfiqar
    Ghafoor, Abdul
    [J]. ENERGY CONVERSION AND MANAGEMENT, 2016, 115 : 132 - 158
  • [23] Review of cold storage materials for subzero applications
    Li, Gang
    Hwang, Yunho
    Radermacher, Reinhard
    Chun, Ho-Hwan
    [J]. ENERGY, 2013, 51 : 1 - 17
  • [24] A phase change material encapsulated in a mechanically strong graphene aerogel with high thermal conductivity and excellent shape stability
    Liao, Honghui
    Chen, Wenhua
    Liu, Yuan
    Wang, Qi
    [J]. COMPOSITES SCIENCE AND TECHNOLOGY, 2020, 189
  • [25] Review on thermal performances and applications of thermal energy storage systems with inorganic phase change materials
    Lin, Yaxue
    Alva, Guruprasad
    Fang, Guiyin
    [J]. ENERGY, 2018, 165 : 685 - 708
  • [26] Ceramic encapsulated metal phase change material for high temperature thermal energy storage
    McMurray, J. W.
    Jolly, B. C.
    Raiman, S. S.
    Schumacher, A. T.
    Cooley, K. M.
    Lara-Curzio, E.
    [J]. APPLIED THERMAL ENGINEERING, 2020, 170
  • [27] Heat balance of textile materials modified with the mixtures of PCM microcapsules
    Nejman, Alicja
    Goetzendorf-Grabowska, Bogna
    [J]. THERMOCHIMICA ACTA, 2013, 569 : 144 - 150
  • [28] Energy management and CO2 mitigation using phase change materials (PCM) for thermal energy storage (TES) in cold storage and transport
    Oro, Eduard
    Miro, Laia
    Farid, Mohammed M.
    Martin, Viktoria
    Cabeza, Luisa F.
    [J]. INTERNATIONAL JOURNAL OF REFRIGERATION-REVUE INTERNATIONALE DU FROID, 2014, 42 : 26 - 35
  • [29] Parameshwaran R., 2015, Properties and Applications, P402, DOI [10.1016/B978-1-78242-380-5.00015-7, DOI 10.1016/B978-1-78242-380-5.00015-7]
  • [30] Thermo-mechanical analysis of ceramic encapsulated phase-change-material (PCM) particles
    Pitie, F.
    Zhao, C. Y.
    Caceres, G.
    [J]. ENERGY & ENVIRONMENTAL SCIENCE, 2011, 4 (06) : 2117 - 2124