Development and validation of multivariable quantitative ultrasound for diagnosing hepatic steatosis

被引:3
作者
Jeon, Sun Kyung [1 ,2 ]
Lee, Jeong Min [1 ,2 ,3 ]
Cho, Soo Jin [4 ]
Byun, Young-Hye [4 ]
Jee, Jae Hwan [4 ]
Kang, Mira [4 ,5 ,6 ]
机构
[1] Seoul Natl Univ Hosp, Dept Radiol, 101 Daehangno, Seoul 03080, South Korea
[2] Seoul Natl Univ, Coll Med, 101 Daehangno, Seoul 03080, South Korea
[3] Seoul Natl Univ, Inst Radiat Med, Med Res Ctr, Seoul, South Korea
[4] Sungkyunkwan Univ, Ctr Hlth Promot, Samsung Med Ctr, Sch Med, 81 Irwon Ro, Seoul 06351, South Korea
[5] Sungkyunkwan Univ, Samsung Adv Inst Hlth Sci & Technol SAIHST, Dept Digital Hlth, Seoul, South Korea
[6] Sungkyunkwan Univ, Digital Innovat Ctr, Samsung Med Ctr, Sch Med, Seoul, South Korea
关键词
DENSITY FAT FRACTION; NONINVASIVE DIAGNOSIS; LIVER-DISEASE; QUANTIFICATION;
D O I
10.1038/s41598-023-42463-w
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
This study developed and validated multivariable quantitative ultrasound (QUS) model for diagnosing hepatic steatosis. Retrospective secondary analysis of prospectively collected QUS data was performed. Participants underwent QUS examinations and magnetic resonance imaging proton density fat fraction (MRI-PDFF; reference standard). A multivariable regression model for estimating hepatic fat fraction was determined using two QUS parameters from one tertiary hospital (development set). Correlation between QUS-derived estimated fat fraction(USFF) and MRI-PDFF and diagnostic performance of USFF for hepatic steatosis (MRI-PDFF & GE; 5%) were assessed, and validated in an independent data set from the other health screening center(validation set). Development set included 173 participants with suspected NAFLD with 126 (72.8%) having hepatic steatosis; and validation set included 452 health screening participants with 237 (52.4%) having hepatic steatosis. USFF was correlated with MRI-PDFF (Pearson r = 0.799 and 0.824; development and validation set). The model demonstrated high diagnostic performance, with areas under the receiver operating characteristic curves of 0.943 and 0.924 for development and validation set, respectively. Using cutoff of 6.0% from development set, USFF showed sensitivity, specificity, positive predictive value, and negative predictive value of 87.8%, 78.6%, 81.9%, and 85.4% for diagnosing hepatic steatosis in validation set. In conclusion, multivariable QUS parameters-derived estimated fat fraction showed high diagnostic performance for detecting hepatic steatosis.
引用
收藏
页数:9
相关论文
共 25 条
[1]   Assessment of hepatic steatosis by using attenuation imaging: a quantitative, easy-to-perform ultrasound technique [J].
Bae, Jae Seok ;
Lee, Dong Ho ;
Lee, Jae Young ;
Kim, Haeryoung ;
Yu, Su Jong ;
Lee, Jeong-Hoon ;
Cho, Eun Ju ;
Lee, Yun Bin ;
Han, Joon Koo ;
Choi, Byung Ihn .
EUROPEAN RADIOLOGY, 2019, 29 (12) :6499-6507
[2]   Nonalcoholic Fatty Liver Disease 2020: The State of the Disease [J].
Cotter, Thomas G. ;
Rinella, Mary .
GASTROENTEROLOGY, 2020, 158 (07) :1851-1864
[3]   Validity of real time ultrasound in the diagnosis of hepatic steatosis: A prospective study [J].
Dasarathy, Srinivasan ;
Dasarathy, Jaividhya ;
Khiyami, Amer ;
Joseph, Rajesh ;
Lopez, Rocio ;
McCullough, Arthur J. .
JOURNAL OF HEPATOLOGY, 2009, 51 (06) :1061-1067
[4]   Quantification of Hepatic Steatosis by Ultrasound: Prospective Comparison With MRI Proton Density Fat Fraction as Reference Standard [J].
Dillman, Jonathan R. ;
Thapaliya, Samjhana ;
Tkach, Jean A. ;
Trout, Andrew T. .
AMERICAN JOURNAL OF ROENTGENOLOGY, 2022, 219 (05) :784-791
[5]   Performance of the Attenuation Imaging Technology in the Detection of Liver Steatosis [J].
Ferraioli, Giovanna ;
Maiocchi, Laura ;
Savietto, Giovanni ;
Tinelli, Carmine ;
Nichetti, Mara ;
Rondanelli, Mariangela ;
Calliada, Fabrizio ;
Preda, Lorenzo ;
Filice, Carlo .
JOURNAL OF ULTRASOUND IN MEDICINE, 2021, 40 (07) :1325-1332
[6]   Pulse-Echo Quantitative US Biomarkers for Liver Steatosis: Toward Technical Standardization [J].
Fetzer, David T. ;
Rosado-Mendez, Ivan M. ;
Wang, Michael ;
Robbin, Michelle L. ;
Ozturk, Arinc ;
Wear, Keith A. ;
Ormachea, Juvenal ;
Stiles, Timothy A. ;
Fowlkes, J. Brian ;
Hall, Timothy J. ;
Samir, Anthony E. .
RADIOLOGY, 2022, 305 (02) :265-276
[7]   Mechanisms of NAFLD development and therapeutic strategies [J].
Friedman, Scott L. ;
Neuschwander-Tetri, Brent A. ;
Rinella, Mary ;
Sanyal, Arun J. .
NATURE MEDICINE, 2018, 24 (07) :908-922
[8]   Noninvasive Diagnosis of Nonalcoholic Fatty Liver Disease and Quantification of Liver Fat with Radiofrequency Ultrasound Data Using One-dimensional Convolutional Neural Networks [J].
Han, Aiguo ;
Byra, Michal ;
Heba, Elhamy ;
Andre, Michael P. ;
Erdman, John W., Jr. ;
Loomba, Rohit ;
Sirlin, Claude B. ;
O'Brien, William D., Jr. .
RADIOLOGY, 2020, 295 (02) :342-350
[9]   Two-dimensional Convolutional Neural Network Using Quantitative US for Noninvasive Assessment of Hepatic Steatosis in NAFLD [J].
Jeon, Sun Kyung ;
Lee, Jeong Min ;
Joo, Ijin ;
Yoon, Jeong Hee ;
Lee, Gunwoo .
RADIOLOGY, 2023, 307 (01)
[10]   Assessment of the inter-platform reproducibility of ultrasound attenuation examination in nonalcoholic fatty liver disease [J].
Jeon, Sun Kyung ;
Lee, Jeong Min ;
Joo, Ijin ;
Yoon, Jeong Hee .
ULTRASONOGRAPHY, 2022, 41 (02) :355-364