Soft-Magnetic Behavior of Fe-Based Nanocrystalline Alloys Produced Using Laser Powder Bed Fusion

被引:5
作者
Ozden, Merve G. [1 ]
Freeman, Felicity S. H. B. [1 ]
Morley, Nicola A. [1 ]
机构
[1] Univ Sheffield, Dept Mat Sci & Engn, Sheffield S1 3JD, England
关键词
amorphous; nanocrystalline magnetic materials; laser additive manufacturing process optimization; laser powder bed fusion; MICROSTRUCTURE; SI; COERCIVITY;
D O I
10.1002/adem.202300597
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Herein, an extensive experimental study is presented on the influence of the major process parameters of the laser powder bed fusion (LPBF) technique on the bulk density and soft-magnetic properties of Fe-based bulk metallic glasses (BMGs). For this purpose, 81 samples are manufactured using the combinations of different process parameters, that is, layer thickness (t: 50-70 & mu;m), laser power (P: 70-130 W), laser scan speed (v: 900-1100 mm s(-1)), and hatch spacing (h: 20-40 & mu;m). High bulk density (& GE;99%) is achieved utilizing low P and v combined with low h and t in order to decrease energy input to the powder, preventing cracks associated with the brittle nature of BMGs. Furthermore, it is indicated that h = 30 & mu;m and v = 1000 mm s(-1) play a determining role in acquiring high saturation magnetization (& GE;200 Am-2 kg(-1)). Due to the laser scanning nature of the process, two distinct microstructures evolve, melt-pool (MP) and heat-affected zone (HAZ). According to thermal modeling performed in this study, laser power has the major effect on the thermal development in the microstructure (thermal gradient evolved between the two hatches and the cooling rate from MP through HAZ).
引用
收藏
页数:13
相关论文
共 29 条
[1]   Effect of the Laser Scan Rate on the Microstructure, Magnetic Properties, and Microhardness of Selective Laser-Melted FeSiB [J].
Alleg, Safia ;
Drablia, Rima ;
Fenineche, Nouredine .
JOURNAL OF SUPERCONDUCTIVITY AND NOVEL MAGNETISM, 2018, 31 (11) :3565-3577
[2]   Origin of low coercivity of Fe-(Al, Ga)-(P, C, B, Si, Ge) bulk glassy alloys [J].
Bitoh, T ;
Makino, A ;
Inoue, A .
MATERIALS TRANSACTIONS, 2003, 44 (10) :2020-2024
[3]  
Çelikbilek M, 2012, ADVANCES IN CRYSTALLIZATION PROCESSES, P127
[4]   Additive manufacturing of magnetic materials [J].
Chaudhary, V. ;
Mantri, S. A. ;
Ramanujan, R. V. ;
Banerjee, R. .
PROGRESS IN MATERIALS SCIENCE, 2020, 114
[5]   Additive manufacturing of metallic components - Process, structure and properties [J].
DebRoy, T. ;
Wei, H. L. ;
Zuback, J. S. ;
Mukherjee, T. ;
Elmer, J. W. ;
Milewski, J. O. ;
Beese, A. M. ;
Wilson-Heid, A. ;
De, A. ;
Zhang, W. .
PROGRESS IN MATERIALS SCIENCE, 2018, 92 :112-224
[6]  
Eagar T., 1983, 64 ANN AWS CONV PHIL
[7]   A critical review of powder-based additive manufacturing of ferrous alloys: Process parameters, microstructure and mechanical properties [J].
Fayazfar, Haniyeh ;
Salarian, Mehrnaz ;
Rogalsky, Allan ;
Sarker, Dyuti ;
Russo, Paola ;
Paserin, Vlad ;
Toyserkani, Ehsan .
MATERIALS & DESIGN, 2018, 144 :98-128
[8]   Random and uniform anisotropy in soft magnetic nanocrystalline alloys (invited) [J].
Flohrer, Sybille ;
Herzer, Giselher .
JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2010, 322 (9-12) :1511-1514
[9]   Microstructure and magnetic properties of FeSiBCrC soft magnetic alloy manufactured by selective laser melting [J].
Gao, Shuohong ;
Yan, Xingchen ;
Chang, Cheng ;
Aubry, Eric ;
He, Pengjiang ;
Liu, Min ;
Liao, Hanlin ;
Fenineche, Nouredine .
MATERIALS LETTERS, 2021, 290 (290)
[10]   GRAIN-SIZE DEPENDENCE OF COERCIVITY AND PERMEABILITY IN NANOCRYSTALLINE FERROMAGNETS [J].
HERZER, G .
IEEE TRANSACTIONS ON MAGNETICS, 1990, 26 (05) :1397-1402