Hierarchical bidirectional aggregation with prior guided transformer for few-shot segmentation

被引:0
作者
Kong, Qiuyu [1 ]
Jiang, Jie [1 ]
Yang, Junyan [1 ]
Wang, Qi [1 ]
机构
[1] Natl Univ Def Technol, Coll Syst Engn, Changsha 410073, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
Few-shot semantic segmentation; Transformer; Information aggregation; Affinity map;
D O I
10.1007/s13735-023-00282-9
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Recent years have witnessed significant interest in few-shot segmentation methods, with the aim of predicting novel categories in a query image given the limited labeled support set. Despite demonstrated successes, some existing methods might suffer from the intra-class inconsistency between query and support samples for local unidirectional information guidance. We propose a hierarchical bidirectional aggregation with prior guided transformer for abundant intra-class common cues. Specifically, we adaptively aggregate support and query features by a non-local bidirectional information flow in a hierarchical manner to derive a closer and deeper correlation. We further introduce the prior affinity map to impart inductive bias and eliminate interfering semantics. Experimental results on three benchmark datasets demonstrate that the proposed method surpasses some previous state-of-the-art approaches well, especially performing favorably in handling challenging situations under 1-shot setting.
引用
收藏
页数:14
相关论文
共 48 条
[1]   On the Texture Bias for Few-Shot CNN Segmentation [J].
Azad, Reza ;
Fayjie, Abdur R. ;
Kauffmann, Claude ;
Ben Ayed, Ismail ;
Pedersoli, Marco ;
Dolz, Jose .
2021 IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION WACV 2021, 2021, :2673-2682
[2]   Few-Shot Segmentation Without Meta-Learning: A Good Transductive Inference Is All You Need? [J].
Boudiaf, Malik ;
Kervadec, Hoel ;
Masud, Ziko Imtiaz ;
Piantanida, Pablo ;
Ben Ayed, Ismail ;
Dolz, Jose .
2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, :13974-13983
[3]   Meta-Seg: A Generalized Meta-Learning Framework for Multi-Class Few-Shot Semantic Segmentation [J].
Cao, Zhiying ;
Zhang, Tengfei ;
Diao, Wenhui ;
Zhang, Yue ;
Lyu, Xiaode ;
Fu, Kun ;
Sun, Xian .
IEEE ACCESS, 2019, 7 :166109-166121
[4]   End-to-End Object Detection with Transformers [J].
Carion, Nicolas ;
Massa, Francisco ;
Synnaeve, Gabriel ;
Usunier, Nicolas ;
Kirillov, Alexander ;
Zagoruyko, Sergey .
COMPUTER VISION - ECCV 2020, PT I, 2020, 12346 :213-229
[5]  
Chen J., 2021, arXiv
[6]   DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs [J].
Chen, Liang-Chieh ;
Papandreou, George ;
Kokkinos, Iasonas ;
Murphy, Kevin ;
Yuille, Alan L. .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2018, 40 (04) :834-848
[7]  
Chen X, 2022, EFFICIENT VISUAL TRA
[8]   The Cityscapes Dataset for Semantic Urban Scene Understanding [J].
Cordts, Marius ;
Omran, Mohamed ;
Ramos, Sebastian ;
Rehfeld, Timo ;
Enzweiler, Markus ;
Benenson, Rodrigo ;
Franke, Uwe ;
Roth, Stefan ;
Schiele, Bernt .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :3213-3223
[9]  
Dosovitskiy A, 2021, Arxiv, DOI arXiv:2010.11929
[10]   The Pascal Visual Object Classes (VOC) Challenge [J].
Everingham, Mark ;
Van Gool, Luc ;
Williams, Christopher K. I. ;
Winn, John ;
Zisserman, Andrew .
INTERNATIONAL JOURNAL OF COMPUTER VISION, 2010, 88 (02) :303-338