Pattern classification based on the amygdala does not predict an individual's response to emotional stimuli

被引:3
作者
Varkevisser, Tim [1 ,2 ,3 ,8 ]
Geuze, Elbert [1 ,2 ]
van den Boom, Max A. [4 ,5 ]
Kouwer, Karlijn [6 ]
van Honk, Jack [3 ,7 ]
van Lutterveld, Remko [1 ,2 ]
机构
[1] Univ Med Ctr, Utrecht, Netherlands
[2] Minist Def, Brain Res & Innovat Ctr, Utrecht, Netherlands
[3] Univ Utrecht, Utrecht, Netherlands
[4] Mayo Clin, Dept Physiol & Biomed Engn, Rochester, MN USA
[5] Univ Med Ctr, Dept Neurol & Neurosurg, Utrecht, Netherlands
[6] Univ Bergen, Fac Psychol, Dept Biol & Med Psychol, Bergen, Norway
[7] Univ Cape Town, Cape Town, South Africa
[8] Dutch Minist Def, Brain Res & Innovat Ctr, Lundlaan 1, NL-3584 EZ Utrecht, Netherlands
关键词
amygdala; emotion; fMRI; machine learning; multi-voxel pattern analysis (MVPA); pattern classification; task reactivity; POSTTRAUMATIC-STRESS-DISORDER; FUNCTIONAL MRI; ACTIVATION; BRAIN; METAANALYSIS; VETERANS; NETWORK; CORTEX; ROBUST; FEAR;
D O I
10.1002/hbm.26391
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Functional magnetic resonance imaging (fMRI) studies have often recorded robust univariate group effects in the amygdala of subjects exposed to emotional stimuli. Yet it is unclear to what extent this effect also holds true when multi-voxel pattern analysis (MVPA) is applied at the level of the individual participant. Here we sought to answer this question. To this end, we combined fMRI data from two prior studies (N = 112). For each participant, a linear support vector machine was trained to decode the valence of emotional pictures (negative, neutral, positive) based on brain activity patterns in either the amygdala (primary region-of-interest analysis) or the whole-brain (secondary exploratory analysis). The accuracy score of the amygdala-based pattern classifications was statistically significant for only a handful of participants (4.5%) with a mean and standard deviation of 37% & PLUSMN; 5% across all subjects (range: 28-58%; chance-level: 33%). In contrast, the accuracy score of the whole-brain pattern classifications was statistically significant in roughly half of the participants (50.9%), and had an across-subjects mean and standard deviation of 49% & PLUSMN; 6% (range: 33-62%). The current results suggest that the information conveyed by the emotional pictures was encoded by spatially distributed parts of the brain, rather than by the amygdala alone, and may be of particular relevance to studies that seek to target the amygdala in the treatment of emotion regulation problems, for example via real-time fMRI neurofeedback training.
引用
收藏
页码:4452 / 4466
页数:15
相关论文
共 52 条
[41]   Optimizing fMRI experimental design for MVPA-based BCI control: Combining the strengths of block and event-related designs [J].
Valente, Giancarlo ;
Kaas, Amanda L. ;
Formisano, Elia ;
Goebela, Rainer .
NEUROIMAGE, 2019, 186 :369-381
[42]   Exaggerated Brain Activation During Emotion Processing in Unaffected Siblings of Patients with Schizophrenia [J].
van Buuren, Mariet ;
Vink, Matthijs ;
Rapcencu, Anca E. ;
Kahn, Rene S. .
BIOLOGICAL PSYCHIATRY, 2011, 70 (01) :81-87
[43]   Towards an intuitive communication-BCI: decoding visually imagined characters from the early visual cortex using high-field fMRI [J].
van den Boom, Max A. ;
Vansteensel, Mariska J. ;
Koppeschaar, Melissa, I ;
Raemaekers, Matthijs A. H. ;
Ramsey, Nick F. .
BIOMEDICAL PHYSICS & ENGINEERING EXPRESS, 2019, 5 (05)
[44]   Neural correlates of trauma-unrelated emotional processing in war veterans with PTSD [J].
van Rooij, S. J. H. ;
Rademaker, A. R. ;
Kennis, M. ;
Vink, M. ;
Kahn, R. S. ;
Geuze, E. .
PSYCHOLOGICAL MEDICINE, 2015, 45 (03) :575-587
[45]   Predicting Treatment Outcome in PTSD: A Longitudinal Functional MRI Study on Trauma-Unrelated Emotional Processing [J].
van Rooij, Sanne J. H. ;
Kennis, Mitzy ;
Vink, Matthijs ;
Geuze, Elbert .
NEUROPSYCHOPHARMACOLOGY, 2016, 41 (04) :1156-1165
[46]  
Van Rossum G., 1995, Python reference manual
[47]   Resting-state functional connectivity in combat veterans suffering from impulsive aggression [J].
Varkevisser, Tim ;
Gladwin, Thomas E. ;
Heesink, Lieke ;
van Honk, Jack ;
Geuze, Elbert .
SOCIAL COGNITIVE AND AFFECTIVE NEUROSCIENCE, 2017, 12 (12) :1881-1889
[48]   Assessing and tuning brain decoders: Cross-validation, caveats, and guidelines [J].
Varoquaux, Gael ;
Raamana, Pradeep Reddy ;
Engemann, Denis A. ;
Hoyos-Idrobo, Andres ;
Schwartz, Yannick ;
Thirion, Bertrand .
NEUROIMAGE, 2017, 145 :166-179
[49]   Functional differences in emotion processing during adolescence and early adulthood [J].
Vink, Matthijs ;
Derks, Jolanda M. ;
Hoogendam, Janna Marie ;
Hillegers, Manon ;
Kahn, Rene S. .
NEUROIMAGE, 2014, 91 :70-76
[50]   SVM recursive feature elimination analyses of structural brain MRI predicts near-term relapses in patients with clinically isolated syndromes suggestive of multiple sclerosis [J].
Wottschel, Viktor ;
Chard, Declan T. ;
Enzinger, Christian ;
Filippi, Massimo ;
Frederiksen, Jette L. ;
Gasperini, Claudio ;
Giorgio, Antonio ;
Rocca, Maria A. ;
Rovira, Alex ;
De Stefano, Nicola ;
Tintore, Mar ;
Alexander, Daniel C. ;
Barkhof, Frederik ;
Ciccarelli, Olga .
NEUROIMAGE-CLINICAL, 2019, 24