Distributed memory, GPU accelerated Fock construction for hybrid, Gaussian basis density functional theory

被引:13
作者
Williams-Young, David B. [1 ]
Asadchev, Andrey [2 ]
Popovici, Doru Thom [1 ]
Clark, David [3 ]
Waldrop, Jonathan [4 ]
Windus, Theresa L. [4 ,5 ]
Valeev, Edward F. [2 ]
de Jong, Wibe A. [1 ]
机构
[1] Lawrence Berkeley Natl Lab, Appl Math & Computat Res Div, Berkeley, CA 94720 USA
[2] Virginia Tech, Dept Chem, Blacksburg, VA 24061 USA
[3] NVIDIA Corp, Santa Clara, CA 95051 USA
[4] Ames Natl Lab, Chem & Biol Sci Div, Ames, IA 50011 USA
[5] Iowa State Univ, Dept Chem, Ames, IA 50011 USA
关键词
GRAPHICAL PROCESSING UNITS; MOLECULAR-ORBITAL METHODS; REPULSION INTEGRAL EVALUATION; J MATRIX ENGINE; HARTREE-FOCK; QUANTUM-CHEMISTRY; 2-ELECTRON INTEGRALS; HIGHLY EFFICIENT; BASIS-SETS; QUADRATURE;
D O I
10.1063/5.0151070
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
With the growing reliance of modern supercomputers on accelerator-based architecture such a graphics processing units (GPUs), the development and optimization of electronic structure methods to exploit these massively parallel resources has become a recent priority. While significant strides have been made in the development GPU accelerated, distributed memory algorithms for many modern electronic structure methods, the primary focus of GPU development for Gaussian basis atomic orbital methods has been for shared memory systems with only a handful of examples pursing massive parallelism. In the present work, we present a set of distributed memory algorithms for the evaluation of the Coulomb and exact exchange matrices for hybrid Kohn-Sham DFT with Gaussian basis sets via direct density-fitted (DF-J-Engine) and seminumerical (sn-K) methods, respectively. The absolute performance and strong scalability of the developed methods are demonstrated on systems ranging from a few hundred to over one thousand atoms using up to 128 NVIDIA A100 GPUs on the Perlmutter supercomputer.
引用
收藏
页数:19
相关论文
共 136 条
[1]  
Calvin JA, 2015, Arxiv, DOI arXiv:1504.05046
[2]   Performance, Design, and Autotuning of Batched GEMM for GPUs [J].
Abdelfattah, Ahmad ;
Haidar, Azzam ;
Tomov, Stanimire ;
Dongarra, Jack .
HIGH PERFORMANCE COMPUTING, 2016, 9697 :21-38
[3]   Toward reliable density functional methods without adjustable parameters: The PBE0 model [J].
Adamo, C ;
Barone, V .
JOURNAL OF CHEMICAL PHYSICS, 1999, 110 (13) :6158-6170
[4]   A tensor approach to two-electron matrix elements [J].
Adams, TR ;
Adamson, RD ;
Gill, PMW .
JOURNAL OF CHEMICAL PHYSICS, 1997, 107 (01) :124-131
[5]   Efficient evaluation of three-center two-electron integrals over Gaussian functions [J].
Ahlrichs, R .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2004, 6 (22) :5119-5121
[6]  
AHMADI GR, 1995, CHEM PHYS LETT, V246, P364, DOI 10.1016/0009-2614(95)01127-4
[7]   Performance Modeling and Tuning for DFT Calculations on Heterogeneous Architectures [J].
Ahmed, Hadia ;
Williams-Young, David B. ;
Ibrahim, Khaled Z. ;
Yang, Chao .
2021 IEEE INTERNATIONAL PARALLEL AND DISTRIBUTED PROCESSING SYMPOSIUM WORKSHOPS (IPDPSW), 2021, :714-722
[8]   Exascale applications: skin in the game [J].
Alexander, Francis ;
Almgren, Ann ;
Bell, John ;
Bhattacharjee, Amitava ;
Chen, Jacqueline ;
Colella, Phil ;
Daniel, David ;
DeSlippe, Jack ;
Diachin, Lori ;
Draeger, Erik ;
Dubey, Anshu ;
Dunning, Thom ;
Evans, Thomas ;
Foster, Ian ;
Francois, Marianne ;
Germann, Tim ;
Gordon, Mark ;
Habib, Salman ;
Halappanavar, Mahantesh ;
Hamilton, Steven ;
Hart, William ;
Huang, Zhenyu ;
Hungerford, Aimee ;
Kasen, Daniel ;
Kent, Paul R. C. ;
Kolev, Tzanio ;
Kothe, Douglas B. ;
Kronfeld, Andreas ;
Luo, Ye ;
Mackenzie, Paul ;
McCallen, David ;
Messer, Bronson ;
Mniszewski, Sue ;
Oehmen, Chris ;
Perazzo, Amedeo ;
Perez, Danny ;
Richards, David ;
Rider, William J. ;
Rieben, Rob ;
Roche, Kenneth ;
Siegel, Andrew ;
Sprague, Michael ;
Steefel, Carl ;
Stevens, Rick ;
Syamlal, Madhava ;
Taylor, Mark ;
Turner, John ;
Vay, Jean-Luc ;
Voter, Artur F. ;
Windus, Theresa L. .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2020, 378 (2166)
[9]   Real-Space Density Functional Theory on Graphical Processing Units: Computational Approach and Comparison to Gaussian Basis Set Methods [J].
Andrade, Xavier ;
Aspuru-Guzik, Alan .
JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2013, 9 (10) :4360-4373
[10]  
[Anonymous], US