Ensemble Reweighting Using Cryo-EM Particle Images

被引:18
作者
Tang, Wai Shing [1 ,2 ]
Silva-Sanchez, David [1 ,3 ]
Giraldo-Barreto, Julian [1 ]
Carpenter, Bob [1 ]
Hanson, Sonya M. [1 ,2 ]
Barnett, Alex H. [1 ]
Thiede, Erik H. [1 ]
Cossio, Pilar [1 ,2 ]
机构
[1] Flatiron Inst, Ctr Computat Math, New York, NY 10010 USA
[2] Flatiron Inst, Ctr Computat Biol, New York, NY 10010 USA
[3] Yale Univ, Dept Math, New Haven, CT 06511 USA
关键词
MOLECULAR-DYNAMICS; CRYOELECTRON MICROSCOPY; PROTEIN; TRAJECTORIES; SIMULATIONS; RIBOSOME;
D O I
10.1021/acs.jpcb.3c01087
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Cryo-electronmicroscopy (cryo-EM) has recently become a leadingmethod for obtaining high-resolution structures of biological macromolecules.However, cryo-EM is limited to biomolecular samples with low conformationalheterogeneity, where most conformations can be well-sampled at variousprojection angles. While cryo-EM provides single-molecule data forheterogeneous molecules, most existing reconstruction tools cannotretrieve the ensemble distribution of possible molecular conformationsfrom these data. To overcome these limitations, we build on a previousBayesian approach and develop an ensemble refinement framework thatestimates the ensemble density from a set of cryo-EM particle imagesby reweighting a prior conformational ensemble, e.g., from moleculardynamics simulations or structure prediction tools. Our work providesa general approach to recovering the equilibrium probability densityof the biomolecule directly in conformational space from single-moleculedata. To validate the framework, we study the extraction of statepopulations and free energies for a simple toy model and from syntheticcryo-EM particle images of a simulated protein that explores multiplefolded and unfolded conformations.
引用
收藏
页码:5410 / 5421
页数:12
相关论文
共 61 条
[51]   On the statistical equivalence of restrained-ensemble simulations with the maximum entropy method [J].
Roux, Benoit ;
Weare, Jonathan .
JOURNAL OF CHEMICAL PHYSICS, 2013, 138 (08)
[52]   SAXS Ensemble Refinement of ESCRT-III CHMP3 Conformational Transitions [J].
Rozycki, Bartosz ;
Kim, Young C. ;
Hummer, Gerhard .
STRUCTURE, 2011, 19 (01) :109-116
[53]   Folding free-energy landscape of a 10-residue mini-protein, chignolin [J].
Satoh, Daisuke ;
Shimizu, Kentaro ;
Nakamura, Shugo ;
Terada, Tohru .
FEBS LETTERS, 2006, 580 (14) :3422-3426
[54]  
Schubert E., 2022, J. Open Source Softw, V7, P4183, DOI DOI 10.21105/JOSS.04183
[55]   Fast and eager k-medoids clustering: O(k) runtime improvement of the PAM, CLARA, and CLARANS algorithms [J].
Schubert, Erich ;
Rousseeuw, Peter J. .
INFORMATION SYSTEMS, 2021, 101
[56]  
Seitz E., 2019, bioRxiv
[57]   Molecular dynamics flexible fitting: A practical guide to combine cryo-electron microscopy and X-ray crystallography [J].
Trabuco, Leonardo G. ;
Villa, Elizabeth ;
Schreiner, Eduard ;
Harrison, Christopher B. ;
Schulten, Klaus .
METHODS, 2009, 49 (02) :174-180
[58]  
Vani B. P., 2022, BIORXIV, DOI 10.1101/2022.05.25.493365
[59]  
Vehtari, 2013, BAYESIAN DATA ANAL
[60]   NMMD: Efficient Cryo-EM Flexible Fitting Based on Simultaneous Normal Mode and Molecular Dynamics atomic displacements [J].
Vuillemot, Remi ;
Miyashita, Osamu ;
Tama, Florence ;
Rouiller, Isabelle ;
Jonic, Slavica .
JOURNAL OF MOLECULAR BIOLOGY, 2022, 434 (07)