Ensemble Reweighting Using Cryo-EM Particle Images

被引:18
作者
Tang, Wai Shing [1 ,2 ]
Silva-Sanchez, David [1 ,3 ]
Giraldo-Barreto, Julian [1 ]
Carpenter, Bob [1 ]
Hanson, Sonya M. [1 ,2 ]
Barnett, Alex H. [1 ]
Thiede, Erik H. [1 ]
Cossio, Pilar [1 ,2 ]
机构
[1] Flatiron Inst, Ctr Computat Math, New York, NY 10010 USA
[2] Flatiron Inst, Ctr Computat Biol, New York, NY 10010 USA
[3] Yale Univ, Dept Math, New Haven, CT 06511 USA
关键词
MOLECULAR-DYNAMICS; CRYOELECTRON MICROSCOPY; PROTEIN; TRAJECTORIES; SIMULATIONS; RIBOSOME;
D O I
10.1021/acs.jpcb.3c01087
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Cryo-electronmicroscopy (cryo-EM) has recently become a leadingmethod for obtaining high-resolution structures of biological macromolecules.However, cryo-EM is limited to biomolecular samples with low conformationalheterogeneity, where most conformations can be well-sampled at variousprojection angles. While cryo-EM provides single-molecule data forheterogeneous molecules, most existing reconstruction tools cannotretrieve the ensemble distribution of possible molecular conformationsfrom these data. To overcome these limitations, we build on a previousBayesian approach and develop an ensemble refinement framework thatestimates the ensemble density from a set of cryo-EM particle imagesby reweighting a prior conformational ensemble, e.g., from moleculardynamics simulations or structure prediction tools. Our work providesa general approach to recovering the equilibrium probability densityof the biomolecule directly in conformational space from single-moleculedata. To validate the framework, we study the extraction of statepopulations and free energies for a simple toy model and from syntheticcryo-EM particle images of a simulated protein that explores multiplefolded and unfolded conformations.
引用
收藏
页码:5410 / 5421
页数:12
相关论文
共 61 条
[1]   Gromacs: High performance molecular simulations through multi-level parallelism from laptops to supercomputers [J].
Abraham, Mark James ;
Murtola, Teemu ;
Schulz, Roland ;
Páll, Szilárd ;
Smith, Jeremy C. ;
Hess, Berk ;
Lindah, Erik .
SoftwareX, 2015, 1-2 :19-25
[2]   Simulation-based inference with approximately correct parameters via maximum entropy [J].
Barrett, Rainier ;
Ansari, Mehrad ;
Ghoshal, Gourab ;
White, Andrew D. .
MACHINE LEARNING-SCIENCE AND TECHNOLOGY, 2022, 3 (02)
[3]  
Bendory T, 2020, IEEE SIGNAL PROC MAG, V37, P58, DOI [10.1109/MSP.2019.2957822, 10.1109/msp.2019.2957822]
[4]  
Betancourt M., 2016, ARXIV
[5]  
Blau C., 2022, BIORXIV, DOI 10.1101/2022.09.30.510249
[6]   Simultaneous Determination of Protein Structure and Dynamics Using Cryo-Electron Microscopy [J].
Bonomi, Massimiliano ;
Pellarin, Riccardo ;
Vendruscolo, Michele .
BIOPHYSICAL JOURNAL, 2018, 114 (07) :1604-1613
[7]   Principles of protein structural ensemble determination [J].
Bonomi, Massimiliano ;
Heller, Gabriella T. ;
Camilloni, Carlo ;
Vendruscolo, Michele .
CURRENT OPINION IN STRUCTURAL BIOLOGY, 2017, 42 :106-116
[8]   Metainference: A Bayesian inference method for heterogeneous systems [J].
Bonomi, Massimiliano ;
Camilloni, Carlo ;
Cavalli, Andrea ;
Vendruscolo, Michele .
SCIENCE ADVANCES, 2016, 2 (01)
[9]   Combining Experiments and Simulations Using the Maximum Entropy Principle [J].
Boomsma, Wouter ;
Ferkinghoff-Borg, Jesper ;
Lindorff-Larsen, Kresten .
PLOS COMPUTATIONAL BIOLOGY, 2014, 10 (02)
[10]   Biophysical experiments and biomolecular simulations: A perfect match? [J].
Bottaro, Sandro ;
Lindorff-Larsen, Kresten .
SCIENCE, 2018, 361 (6400) :355-+