Data Augmentation Based on Generative Adversarial Networks for Endoscopic Image Classification

被引:4
|
作者
Park, Hyun-Cheol [1 ]
Hong, In-Pyo [2 ]
Poudel, Sahadev [3 ]
Choi, Chang [2 ]
机构
[1] Natl Inst Math Sci, Div Ind Math, Daejeon 34047, South Korea
[2] Gachon Univ, Dept Comp Engn, Seongnam Si 13120, Gyeonggi Do, South Korea
[3] Gachon Univ, Dept IT Convergence Engn, Seongnam Si 13120, Gyeonggi Do, South Korea
基金
新加坡国家研究基金会;
关键词
Endoscopic image classification; colon disease classification; data augmentation; generative adversarial network; digestive system image classification;
D O I
10.1109/ACCESS.2023.3275173
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The incidence of cancer among modern people has recently increased due to various reasons such as eating habits, smoking, and drinking. Therefore, medical image analysis for effective disease diagnosis is considered an extremely important diagnostic tool. In particular, endoscopy is used as a representative screening method for diagnosing diseases of the digestive system. However, it is quite difficult to quickly and thoroughly analyze medical data by relying solely on human vision, such as with endoscopy. Therefore, the purpose of this study was to reduce the fatigue of medical staff through the use of automated disease classification of the digestive system. To automate disease classification, we trained a total of six models, ranging from relatively old deep-learning-based models to recently published approaches. Additionally, to increase the number of medical data, which is generally insufficient, we applied data augmentation using two adversarial generative neural network-based models. We utilized Kvasir version 2 data for the experiment and demonstrated that InceptionNet-V3 showed the best performance improvement when data augmentation based on a Star-GAN was applied experimentally. Furthermore, the approach also exhibited good performance in terms of the F1-Score, which was used to evaluate the safety of the model. Thus, we propose a disease classification automation model centered on safer performance.
引用
收藏
页码:49216 / 49225
页数:10
相关论文
共 50 条
  • [1] Cancer classification with data augmentation based on generative adversarial networks
    Wei, Kaimin
    Li, Tianqi
    Huang, Feiran
    Chen, Jinpeng
    He, Zefan
    FRONTIERS OF COMPUTER SCIENCE, 2022, 16 (02)
  • [2] Cancer classification with data augmentation based on generative adversarial networks
    Kaimin Wei
    Tianqi Li
    Feiran Huang
    Jinpeng Chen
    Zefan He
    Frontiers of Computer Science, 2022, 16
  • [3] Cancer classification with data augmentation based on generative adversarial networks
    WEI Kaimin
    LI Tianqi
    HUANG Feiran
    CHEN Jinpeng
    HE Zefan
    Frontiers of Computer Science, 2022, 16 (02)
  • [4] Experimental Assessment of the Performance of Data Augmentation with Generative Adversarial Networks in the Image Classification Problem
    Karadag, Ozge Oztimur
    Cicek, Ozlem Erdas
    2019 INNOVATIONS IN INTELLIGENT SYSTEMS AND APPLICATIONS CONFERENCE (ASYU), 2019, : 48 - 51
  • [5] A DATA AUGMENTATION APPROACH BASED ON GENERATIVE ADVERSARIAL NETWORKS FOR DATE FRUIT CLASSIFICATION
    Ufuah, Donald
    Thomas, Gabriel
    Balocco, Simone
    Manickavasagan, Annamalai
    APPLIED ENGINEERING IN AGRICULTURE, 2022, 38 (06) : 975 - 982
  • [6] Biosignal Data Augmentation Based on Generative Adversarial Networks
    Harada, Shota
    Hayashi, Hideaki
    Uchida, Seiichi
    2018 40TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2018, : 368 - 371
  • [7] Data augmentation based on conditional generative adversarial networks for lesion classification in ultrasound images
    Cai, Lina
    Zhang, Zhenghua
    Li, Qingkai
    Zhang, Lun
    Journal of Biotech Research, 2024, 17 : 112 - 125
  • [8] Conditional Generative Adversarial Networks for Data Augmentation in Breast Cancer Classification
    Wong, Weng San
    Amer, Mohammed
    Maul, Tomas
    Liao, Iman Yi
    Ahmed, Amr
    RECENT ADVANCES ON SOFT COMPUTING AND DATA MINING (SCDM 2020), 2020, 978 : 392 - 402
  • [9] Conditional Generative Adversarial Networks for Data Augmentation of a Neonatal Image Dataset
    Lyra, Simon
    Mustafa, Arian
    Rixen, Joeran
    Borik, Stefan
    Lueken, Markus
    Leonhardt, Steffen
    SENSORS, 2023, 23 (02)
  • [10] Auxiliary Conditional Generative Adversarial Networks for Image Data Set Augmentation
    Mudavathu, Kalpana Devi Bai
    Rao, V. P. Chandra Sekhara
    Ramana, K., V
    PROCEEDINGS OF THE 2018 3RD INTERNATIONAL CONFERENCE ON INVENTIVE COMPUTATION TECHNOLOGIES (ICICT 2018), 2018, : 263 - 269