Model division multiple access for semantic communications

被引:27
作者
Zhang, Ping [1 ,2 ,3 ]
Xu, Xiaodong [1 ,2 ,3 ]
Dong, Chen [1 ]
Niu, Kai [1 ,2 ]
Liang, Haotai [1 ]
Liang, Zijian [1 ]
Qin, Xiaoqi [1 ]
Sun, Mengying [1 ]
Chen, Hao [2 ]
Ma, Nan [1 ,2 ]
Xu, Wenjun [1 ]
Wang, Guangyu [1 ]
Tao, Xiaofeng [2 ,4 ]
机构
[1] Beijing Univ Posts & Telecommun, State Key Lab Networking & Switching Technol, Beijing 100876, Peoples R China
[2] Peng Cheng Lab, Dept Broadband Commun, Shenzhen 518066, Peoples R China
[3] ZGC Inst Ubiquitous X Innovat & Applicat, Beijing 100876, Peoples R China
[4] Beijing Univ Posts & Telecommun, Sch Informat & Commun Engn, Beijing 100876, Peoples R China
基金
国家重点研发计划;
关键词
Model division multiple access (MDMA); Semantic communication; Multiple access; TN92; SYSTEMS; NOMA;
D O I
10.1631/FITEE.2300196
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In a multi-user system, system resources should be allocated to different users. In traditional communication systems, system resources generally include time, frequency, space, and power, so multiple access technologies such as time division multiple access (TDMA), frequency division multiple access (FDMA), space division multiple access (SDMA), code division multiple access (CDMA), and non-orthogonal multiple access (NOMA) are widely used. In semantic communication, which is considered a new paradigm of the next-generation communication system, we extract high-dimensional features from signal sources in a model-based artificial intelligence approach from a semantic perspective and construct a model information space for signal sources and channel features. From the high-dimensional semantic space, we excavate the shared and personalized information of semantic information and propose a novel multiple access technology, named model division multiple access (MDMA), which is based on the resource of the semantic domain. From the perspective of information theory, we prove that MDMA can attain more performance gains than traditional multiple access technologies. Simulation results show that MDMA saves more bandwidth resources than traditional multiple access technologies, and that MDMA has at least a 5-dB advantage over NOMA in the additive white Gaussian noise (AWGN) channel under the low signal-to-noise (SNR) condition.
引用
收藏
页码:801 / 812
页数:12
相关论文
共 26 条
[1]  
Cover TM., 2001, ELEMENTS INFORM THEO, P374
[2]   Nonlinear Transform Source-Channel Coding for Semantic Communications [J].
Dai, Jincheng ;
Wang, Sixian ;
Tan, Kailin ;
Si, Zhongwei ;
Qin, Xiaoqi ;
Niu, Kai ;
Zhang, Ping .
IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, 2022, 40 (08) :2300-2316
[3]  
Dai LL, 2015, IEEE COMMUN MAG, V53, P74, DOI 10.1109/MCOM.2015.7263349
[4]   The Application of MIMO to Non-Orthogonal Multiple Access [J].
Ding, Zhiguo ;
Adachi, Fumiyuki ;
Poor, H. Vincent .
IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2016, 15 (01) :537-552
[5]   Semantic Communication System Based on Semantic Slice Models Propagation [J].
Dong, Chen ;
Liang, Haotai ;
Xu, Xiaodong ;
Han, Shujun ;
Wang, Bizhu ;
Zhang, Ping .
IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, 2023, 41 (01) :202-213
[6]   Precoded Index Modulation for Multi-Input Multi-Output OFDM [J].
Gao, Shijian ;
Zhang, Meng ;
Cheng, Xiang .
IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2018, 17 (01) :17-28
[7]   Power-Domain Non-Orthogonal Multiple Access (NOMA) in 5G Systems: Potentials and Challenges [J].
Islam, S. M. Riazul ;
Avazov, Nurilla ;
Dobre, Octavia A. ;
Kwak, Kyung-Sup .
IEEE COMMUNICATIONS SURVEYS AND TUTORIALS, 2017, 19 (02) :721-742
[8]   Wireless Semantic Communications for Video Conferencing [J].
Jiang, Peiwen ;
Wen, Chao-Kai ;
Jin, Shi ;
Li, Geoffrey Ye .
IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, 2023, 41 (01) :230-244
[9]  
Krizhevsky A., 2009, LEARNING MULTIPLE LA
[10]   The Open Images Dataset V4 Unified Image Classification, Object Detection, and Visual Relationship Detection at Scale [J].
Kuznetsova, Alina ;
Rom, Hassan ;
Alldrin, Neil ;
Uijlings, Jasper ;
Krasin, Ivan ;
Pont-Tuset, Jordi ;
Kamali, Shahab ;
Popov, Stefan ;
Malloci, Matteo ;
Kolesnikov, Alexander ;
Duerig, Tom ;
Ferrari, Vittorio .
INTERNATIONAL JOURNAL OF COMPUTER VISION, 2020, 128 (07) :1956-1981