Rate Distortion Theory for Descriptive Statistics

被引:3
作者
Harremoes, Peter [1 ,2 ]
机构
[1] Copenhagen Business Coll, Niels Brock, GSK Dept, Norre Voldgade 34, DK-1358 Copenhagen K, Denmark
[2] Ronne Alle 1 St, DK-2860 Soborg, Denmark
关键词
rate distortion theory; quantizer; descriptive statistics; clustering; Gaussian mixture models; outlier detection; linear regression; Anscombe quartet; qibla; early Islam; INFORMATION; CONVERGENCE; ENTROPY; LAW;
D O I
10.3390/e25030456
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Rate distortion theory was developed for optimizing lossy compression of data, but it also has applications in statistics. In this paper, we illustrate how rate distortion theory can be used to analyze various datasets. The analysis involves testing, identification of outliers, choice of compression rate, calculation of optimal reconstruction points, and assigning "descriptive confidence regions" to the reconstruction points. We study four models or datasets of increasing complexity: clustering, Gaussian models, linear regression, and a dataset describing orientations of early Islamic mosques. These examples illustrate how rate distortion analysis may serve as a common framework for handling different statistical problems.
引用
收藏
页数:24
相关论文
共 58 条
[31]  
Harremoës P, 2013, IEEE INT SYMP INFO, P1516, DOI 10.1109/ISIT.2013.6620480
[32]   Thinning, Entropy, and the Law of Thin Numbers [J].
Harremoes, Peter ;
Johnson, Oliver ;
Kontoyiannis, Ioannis .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2010, 56 (09) :4228-4244
[33]   Testing Goodness-of-Fit via Rate Distortion [J].
Harremoes, Peter .
ITW: 2009 IEEE INFORMATION THEORY WORKSHOP ON NETWORKING AND INFORMATION THEORY, 2009, :17-21
[34]   Convergence of Markov Chains in Information Divergence [J].
Harremoes, Peter ;
Holst, Klaus Kahler .
JOURNAL OF THEORETICAL PROBABILITY, 2009, 22 (01) :186-202
[35]  
Heinrich Hottinger Johann, 1651, Historia orientalis: quae, ex variis orientalium monumentis collecta, agit i. de Muhammedismo
[36]  
HOLST L, 1972, BIOMETRIKA, V59, P137, DOI 10.2307/2334624
[37]  
Johnson O., 2004, Information theory and the central limit theorem
[38]  
Khan M.A., 2021, UNVEILING ORIGIN MEC
[39]  
King D.A., 2020, PETRA FALLACY EARLY
[40]   ON INFORMATION AND SUFFICIENCY [J].
KULLBACK, S ;
LEIBLER, RA .
ANNALS OF MATHEMATICAL STATISTICS, 1951, 22 (01) :79-86